

完整版,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net TOPICS TO DE DISCUSSEO

- Measuring Cost: Which Costs Matter?
- Cost in the Short Run
- Cost in the Long Run
- Long-Run Versus Short-Run Cost Curves

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net TOPICS TO DE DISCUSSEO

- Production with Two Outputs- Economies of Scope
- Dynamic Changes in Costs--The Learning Curve
- Estimating and Predicting Cost

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

- The production technology measures the relationship between input and output.
- Given the production technology, managers must choose how to produce.

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

To determine the optimal level of output and the input combinations, we must convert from the unit measurements of the production technology to dollar measurements or costs.

Measanding Costail、辅导班课程,访问:www.kaoyancas.net

Which Costs Matter?

Economic Cost vs. Accounting Cost

- Accounting Cost
 - Actual expenses plus depreciation charges for capital equipment
- Economic Cost
 - Cost to a firm of utilizing economic resources in production, including opportunity cost

Measuring Costs in 新导班课程,访问: www.kaoyancas.net Which Costs Matter?

- Opportunity cost.
 - Cost associated with opportunities that are foregone when a firm's resources are not put to their highest-value use.

Measuring Costs Matter? Which Costs Matter?

- An Example
 - A firm owns its own building and pays no rent for office space
 - Does this mean the cost of office space is zero?

Measuring Costs in 新导班课程,访问:www.kaoyancas.net Which Costs Matter?

- Sunk Cost
 - Expenditure that has been made and cannot be recovered
 - Should not influence a firm's decisions.

Measyndenge Costail、辅导班课程,访问:www.kaoyancas.net

Which Costs Matter?

- An Example
 - A firm pays \$500,000 for an option to buy a building.
 - The cost of the building is \$5 million or a total of \$5.5 million.
 - The firm finds another building for \$5.25 million.
 - Which building should the firm buy?

Choosing the Location : www.kaoyancas.net for a New Law School Building

- Northwestern University Law School
 - Current location in downtown Chicago
 - 2) Alternative location in Evanston with the main campus

Choosing the Location : www.kaoyancas.net for a New Law School Building

- Northwestern University Law School
 - 3) Choosing a Site
 - ◆ Land owned in Chicago
 - Must purchase land in Evanston
 - Chicago location might appear cheaper without considering the opportunity cost of the downtown land (i.e. what it could be sold for)

Choosing the Location : www.kaoyancas.net for a New Law School Building

- Northwestern University Law School
 - 3) Choosing a Site
 - Chicago location chosen--very costly
 - Justified only if there is some intrinsic values associated with being in Chicago
 - ◆ If not, it was an inefficient decision if it was based on the assumption that the downtown land was "free"

Which Costs Matter?

Fixed and Variable Costs

- Total output is a function of variable inputs and fixed inputs.
- Therefore, the total cost of production equals the fixed cost (the cost of the fixed inputs) plus the variable cost (the cost of the variable inputs), or...

$$TC = FC + VC$$

Measyancas.net 管案O字文章记、辅导班课程,访问:www.kaoyancas.net

Which Costs Matter?

Fixed and Variable Costs

- Fixed Cost
 - Does not vary with the level of output
- Variable Cost
 - Cost that varies as output varies

Which Costs Matter?

- Fixed Cost
 - Cost paid by a firm that is in business regardless of the level of output
- Sunk Cost
 - Cost that have been incurred and cannot be recovered

Meas對价值的真題、答案O字长笔记、辅导班课程,访问:www.kaoyancas.net

Which Costs Matter?

- Personal Computers: most costs are variable
 - Components, labor
- Software: most costs are sunk
 - Cost of developing the software

Measuring Costs in 新导班课程,访问: www.kaoyancas.net Which Costs Matter?

- Pizza
 - Largest cost component is fixed

A Firm's Short-Run Costs (\$)

Rate of Output	Fixed Cost (FC)	Variable Cost (VC)	Total Cost (TC)	Marginal Cost (MC)	Average Fixed Cost (AFC)	Average Variable Cost (AVC)	Average Total Cost (ATC)
0	50	0	50				
1	50	50	100	50	50	50	100
2	50	78	128	28	25	39	64
3	50	98	148	20	16.7	32.7	49.3
4	50	112	162	14	12.5	28	40.5
5	50	130	180	18	10	26	36
6	50	150	200	20	8.3	25	33.3
7	50	175	225	25	7.1	25	32.1
8	50	204	254	29	6.3	25.5	31.8
9	50	242	292	38	5.6	26.9	32.4
10	50	300	350	58	5	30	35
11	50完整版	, 请与 可www.	kaoyancas.net	科大科院考研网	,专注4中科大、	中科院考研	39.5

Marginal Cost (MC) is the cost of expanding output by one unit. Since fixed cost have no impact on marginal cost, it can be written as:

$$MC = \frac{\Delta VC}{\Delta Q} = \frac{\Delta TC}{\Delta Q}$$

Average Total Cost (ATC) is the cost per unit of output, or average fixed cost (AFC) plus average variable cost (AVC). This can be written:

Average Total Cost (ATC) is the cost per unit of output, or average fixed cost (AFC) plus average variable cost (AVC). This can be written:

- The Determinants of Short-Run Cost
 - The relationship between the production function and cost can be exemplified by either increasing returns and cost or decreasing returns and cost.

高参考价值的真题、答案、学长笔记、辅导班课程、访问: www.kaoyancas.net

- The Determinants of Short-Run Cost
 - Increasing returns and cost
 - With increasing returns, output is increasing relative to input and variable cost and total cost will fall relative to output.
 - Decreasing returns and cost
 - With decreasing returns, output is decreasing relative to input and variable cost and total cost will rise relative to output.

 For Example: Assume the wage rate (w) is fixed relative to the number of workers hired. Then:

$$MC = \frac{\Delta VC}{\Delta Q}$$

$$VC = wL$$

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

Continuing:

$$\Delta VC = w\Delta L$$

$$MC = \frac{w\Delta L}{\Delta Q}$$

高参考价值的真题、答案、学长笔记、辅导班课程、访问:www.kaoyancas.net

Continuing:

$$\Delta MP_{L} = \frac{\Delta Q}{\Delta L}$$

$$\Delta L$$
 for a 1 unit $\Delta Q = \frac{\Delta L}{\Delta Q} = \frac{1}{\Delta MP_L}$

高参考价值的真题、答案、学长笔记、辅导班课程、访问:www.kaoyancas.net

In conclusion:

$$MC = \frac{w}{MP_L}$$

 ...and a low marginal product (MP) leads to a high marginal cost (MC) and vise versa.

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

- Consequently (from the table):
 - MC decreases initially with increasing returns
 - 0 through 4 units of output
 - MC increases with decreasing returns
 - ◆5 through 11 units of output

A Firm's Short-Run Costs (\$)

Rate of Output	Fixed Cost (FC)	Variable Cost (VC)	Total Cost (TC)	Marginal Cost (MC)	Average Fixed Cost (AFC)	Average Variable Cost (AVC)	Average Total Cost (ATC)
0	50	0	50				
1	50	50	100	50	50	50	100
2	50	78	128	28	25	39	64
3	50	98	148	20	16.7	32.7	49.3
4	50	112	162	14	12.5	28	40.5
5	50	130	180	18	10	26	36
6	50	150	200	20	8.3	25	33.3
7	50	175	225	25	7.1	25	32.1
8	50	204	254	29	6.3	25.5	31.8
9	50	242	292	38	5.6	26.9	32.4
10	50	300	350	58	5	30	35
11	50完整版	, 第5 回www.ka	aoyancas.net	科大科院考研网	,专注 4- 科大、	中科院考研	39.5

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

Chapter ,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研de 31

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

Chapter ,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研de 32

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Cost Curves for a Firm

- The line drawn from the origin to the tangent of the variable cost curve:
 - Its slope equals AVC
 - The slope of a point on VC equals MC
 - Therefore, MC = AVC at 7 units of output (point A)

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Cost Curves for a Firm

Unit Costs

- AFC falls continuously
- When MC < AVC or MC < ATC, AVC & ATC decrease
- When MC > AVC or MC > ATC, AVC & ATC increase

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Cost Curves for a Firm

Unit Costs

- MC = AVC and ATC at minimum AVC and ATC
- Minimum AVC
 occurs at a lower
 output than minimum
 ATC due to FC

Operating Costs for Aluminum Smelting 高参考价值的真题、答案、学长笔记、辅导班课程,访问: www.kaoyancas.net (\$/Ton - based on an output of 600 tons/day)

Variable costs that are constant at all output levels

Electricity	\$316
Alumina	369
Other raw materials	125
Plant power and fuel	10
Subtotal	\$820

Operating Costs for Aluminum Smelting 高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net (\$/Ton - based on an output of 600 tons/day)

Variable costs that increase when output exceeds 600 tons/day

Labor	\$150
Maintenance	120
Freight	50
Subtotal	\$320
Total operating costs	\$1140

The Shorting Line Yaria 编身 企课程,访问:www.kaoyancas.net

Costs of Aluminum Smelting

The User Cost of Capital

User Cost of Capital = Economic
 Depreciation + (Interest Rate)(Value of Capital)

The User Cost of Capital

- Example
 - Delta buys a Boeing 737 for \$150 million with an expected life of 30 years
 - ◆Annual economic depreciation = \$150 million/30 = \$5 million
 - ◆Interest rate = 10%

The User Cost of Capital

- Example
 - User Cost of Capital = \$5 million +
 (.10)(\$150 million depreciation)
 - ♦ Year 1 = \$5 million + million) = \$20 million

(.10)(\$150

◆Year 10 = \$5 million + million) = \$15 million

(.10)(\$100

The User Cost of Capital

- Rate per dollar of capital
 - r = Depreciation Rate + Interest Rate

The User Cost of Capital

- Airline Example
 - Depreciation Rate = 1/30 = 3.33/yr
 - Rate of Return = 10%/yr
- User Cost of Capital
 - r = 3.33 + 10 = 13.33%/yr

The Cost Minimizing Input Choice

- Assumptions
 - Two Inputs: Labor (L) & capital (K)
 - Price of labor: wage rate (w)
 - The price of capital
 - ◆R = depreciation rate + interest rate

The Cost Minimizing Input Choice

- Question
 - If capital was rented, would it change the value of r?

The Cost Minimizing Input Choice

- The Isocost Line
 - \bullet C = wL + rK
 - Isocost: A line showing all combinations of L & K that can be purchased for the same cost

The Isocost Line

- Rewriting C as linear:
 - \bullet K = C/r (w/r)L
 - Slope of the isocost: $\Delta K/\Delta L = -(w/r)$
 - is the ratio of the wage rate to rental cost of capital.
 - This shows the rate at which capital can be substituted for labor with no change in cost.

Choosing Inputs

- We will address how to minimize cost for a given level of output.
 - We will do so by combining isocosts with isoquants

Producing Given: ##F班课程, 访问: www.kaoyancas.net Output at Minimum Cost

Inputs www.kaoyancas.net an Input Price Change

Isoquants and Isocosts and the Production Function

$$MRTS = -\Delta K / \Delta L = MP_{L} / MP_{K}$$

Slope of isocost line =
$$\frac{\Delta K}{\Delta L} = -\frac{w}{r}$$

The minimum cost combination can then be written as:

$$MP_L/w = MP_K/r$$

 Minimum cost for a given output will occur when each dollar of input added to the production process will add an equivalent amount of output.

Question

• If w = \$10, r = \$2, and MP_L = MP_K, which input would the producer use more of? Why?

The **Essent** for the

- Firms that have a by-product to production produce an effluent.
- An effluent fee is a per-unit fee that firms must pay for the effluent that they emit.
- How would a producer respond to an effluent fee on production?

The **Effect join j**

- The Scenario: Steel Producer
 - 1) Located on a river: Low cost transportation and emission disposal (effluent).
 - 2) EPA imposes a per unit effluent fee to reduce the environmentally harmful effluent.

- The Scenario: Steel Producer
 - 3) How should the firm respond?

The Cost Name of the C

Response to an Effluent Fee

The Cost punitable C

Response to an Effluent Fee

The **Essent** for the

Observations:

- The more easily factors can be substituted, the more effective the fee is in reducing the effluent.
- The greater the degree of substitutes, the less the firm will have to pay (for example: \$50,000 with combination B instead of \$100,000 with combination A)

- Cost minimization with Varying Output Levels
 - A firm's expansion path shows the minimum cost combinations of labor and capital at each level of output.

A Firm's Expansion Path

A Firm's Long-Run Total Cost Curve

What happens to average costs when both inputs are variable (long run) versus only having one input that is variable (short run)?

The **phonis www.kaoyancas.net Short-Run Production**

- Long-Run Average Cost (LAC)
 - Constant Returns to Scale
 - If input is doubled, output will double and average cost is constant at all levels of output.

- Long-Run Average Cost (LAC)
 - Increasing Returns to Scale
 - ◆ If input is doubled, output will more than double and average cost decreases at all levels of output.

- Long-Run Average Cost (LAC)
 - Decreasing Returns to Scale
 - If input is doubled, the increase in output is less than twice as large and average cost increases with output.

- Long-Run Average Cost (LAC)
 - In the long-run:
 - Firms experience increasing and decreasing returns to scale and therefore long-run average cost is "U" shaped.

- Long-Run Average Cost (LAC)
 - Long-run marginal cost leads long-run average cost:
 - ◆If LMC < LAC, LAC will fall</p>
 - ◆ If LMC > LAC, LAC will rise
 - ◆ Therefore, LMC = LAC at the minimum of LAC

Long-Run Average and Marginal Cost

Question

 What is the relationship between longrun average cost and long-run marginal cost when long-run average cost is constant?

- Economies and Diseconomies of Scale
 - Economies of Scale
 - Increase in output is greater than the increase in inputs.
 - Diseconomies of Scale
 - Increase in output is less than the increase in inputs.

Long 多人们的真实 C S L S E E E E E 记、辅导班课程,访问:www.kaoyancas.net Short-Run Cost Curves

Measuring Economies of Scale

 $E_c = Cost - output \ elasticity \\ = \% \Delta \ in \ cost \ from \ a \ 1\% \ increase \\ in \ output$

Measuring Economies of Scale

$$E_c = (\Delta C / C) / (\Delta Q / Q)$$

$$E_c = (\Delta C / \Delta Q) / (C / Q) = MC / AC$$

Long 多人们的真实 C S L S E E E E E 记、辅导班课程,访问:www.kaoyancas.net Short-Run Cost Curves

- Therefore, the following is true:
 - E_C < 1: MC < AC
 - Average cost indicate decreasing economies of scale
 - $E_C = 1$: MC = AC
 - Average cost indicate constant economies of scale
 - $E_C > 1$: MC > AC
 - Average cost indicate increasing diseconomies of scale

- The Relationship Between Short-Run and Long-Run Cost
 - We will use short and long-run cost to determine the optimal plant size

LONG 多个值的真题、CS T 学长红的 辅导班课程,访问:www.kaoyancas.net

Constant Returns to Scale

LONG 多个值的真题、COST 学长红的 辅导班课程,访问:www.kaoyancas.net

Constant Returns to Scale

Observation

- The optimal plant size will depend on the anticipated output (e.g. Q₁ choose SAC₁,etc).
- The long-run average cost curve is the envelope of the firm's short-run average cost curves.

Question

 What would happen to average cost if an output level other than that shown is chosen?

- What is the firms' long-run cost curve?
 - Firms can change scale to change output in the long-run.
 - The long-run cost curve is the dark blue portion of the SAC curve which represents the minimum cost for any level of output.

LOng 多价值的真题、CS 计外值的 辅导班课程,访问:www.kaoyancas.net

Constant Returns to Scale

- Observations
 - The LAC does not include the minimum points of small and large size plants?
 Why not?
 - LMC is not the envelope of the short-run marginal cost. Why not?

Production powith Tax On High Tax On High

- Examples:
 - Chicken farm--poultry and eggs
 - Automobile company--cars and trucks
 - University--Teaching and research

Outputs--Economies of Scope

- Economies of scope exist when the joint output of a single firm is greater than the output that could be achieved by two different firms each producing a single output.
- What are the advantages of joint production?
 - Consider an automobile company producing cars and tractors

Production [15] Production [1

- Advantages
 - 1) Both use capital and labor.
 - 2) The firms share management resources.
 - 3) Both use the same labor skills and type of machinery.

Production [15] Production [1

Production:

- Firms must choose how much of each to produce.
- The alternative quantities can be illustrated using product transformation curves.

Product Transformation Curve

Production [15] Production [1

- Observations
 - Product transformation curves are negatively sloped
 - Constant returns exist in this example
 - Since the production transformation curve is concave is joint production desirable?

Outputs--Economies of Scope

Observations

- There is no direct relationship between economies of scope and economies of scale.
 - May experience economies of scope and diseconomies of scale
 - May have economies of scale and not have economies of scope

Process A Company A Company A Line Company A Line

Outputs--Economies of Scope

The degree of economies of scope measures the savings in cost and can be written:

$$SC = \frac{C(Q_1) + C(Q_2) - C(Q_1, Q_2)}{C(Q_1, Q_2)}$$

- C(Q₁) is the cost of producing Q₁
- C(Q₂) is the cost of producing Q₂
- C(Q₁Q₂) is the joint cost of producing both products

Production www.kaoyancas.net Outputs--Economies of Scope

- Interpretation:
 - If SC > 0 -- Economies of scope
 - If SC < 0 -- Diseconomies of scope

- ssues
 - Truckload versus less than truck load
 - Direct versus indirect routing
 - Length of haul

Economics Scapenser, 访问: www.kaoyancas.net in the Trucking Industry

Questions:

- Economies of Scale
 - Are large-scale, direct hauls cheaper and more profitable than individual hauls by small trucks?
 - Are there cost advantages from operating both direct and indirect hauls?

Economics See Demisure , 访问: www.kaoyancas.net in the Trucking Industry

- Empirical Findings
 - An analysis of 105 trucking firms examined four distinct outputs.
 - Short hauls with partial loads
 - Intermediate hauls with partial loads
 - Long hauls with partial loads
 - Hauls with total loads

Economicos Of Society Society

- Empirical Findings
 - Results
 - ◆ SC = 1.576 for reasonably large firm
 - ◆ SC = 0.104 for very large firms
 - Interpretation
 - Combining partial loads at an intermediate location lowers cost management difficulties with very large firms.

Dynamical Capacid Tale Learning Curve Costs—The Learning Curve

- The learning curve measures the impact of worker's experience on the costs of production.
- It describes the relationship between a firm's cumulative output and amount of inputs needed to produce a unit of output.

The Learning Curve

The Learning Curve

- The horizontal axis measures the cumulative number of hours of machine tools the firm has produced
- The vertical axis measures the number of hours of labor needed to produce each lot.

Costs--The Learning Curve

The learning curve in the figure is based on the relationship:

$$L = BN^{-\beta}$$

N = cumulative units of output produced

L = labor input per unit of output

A, B and β are constants

A & B are positive and β is between 0 and 1

Costs--The Learning Curve

- If N = 1:
 - L equals A + B and this measures labor input to produce the first unit of output
- If $\beta = 0$:
 - Labor input remains constant as the cumulative level of output increases, so there is no learning

Dynamical Costs—The Learning Curve

- If $\beta > 0$ and N increases:
 - L approaches A, and A represent minimum labor input/unit of output after all learning has taken place.
- The larger β :
 - The more important the learning effect.

The Learning Curve

Dynamical Costs—The Learning Curve

- Observations
 - 1) New firms may experience a learning curve, not economies of scale.
 - 2) Older firms have relatively small gains from learning.

ECOPS TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL

Scale Versus Learning

Per-Unit Labor Requirement for each 10 units of Output (<i>L</i>)	Total Labor Requirement
1.00	10.0
.80	18.0 (10.0 + 8.0)
.70	25.0 (18.0 + 7.0)
.64	31.4 (25.0 + 6.4)
.60	37.4 (31.4 + 6.0)
.56	43.0 (37.4 + 5.6)
.53	48.3 (43.0 + 5.3)
.51	53.4 (48.3 + 5.1)
	1.00 .80 .70 .64 .60 .56

完整版,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研

- The learning curve implies:
 - 1) The labor requirement falls per unit.
 - 2) Costs will be high at first and then will fall with learning.
 - 3) After 8 years the labor requirement will be 0.51 and per unit cost will be half what it was in the first year of production.

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net The Learning Curve in Practice

Scenario

 A new firm enters the chemical processing industry.

Do they:

- 1) Produce a low level of output and sell at a high price?
- 2) Produce a high level of output and sell at a low price?

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net The Learning Curve in Practice

How would the learning curve influence your decision?

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net The Learning Curve in Practice

- The Empirical Findings
 - Study of 37 chemical products
 - ◆ Average cost fell 5.5% per year
 - For each doubling of plant size, average production costs fall by 11%
 - For each doubling of cumulative output, the average cost of production falls by 27%
- Which is more important, the economies of scale or learning effects?

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net The Learning Curve in Practice

- Other Empirical Findings
 - In the semi-conductor industry a study of seven generations of DRAM semiconductors from 1974-1992 found learning rates averaged 20%.
 - In the aircraft industry the learning rates are as high as 40%.

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net The Learning Curve in Practice

- Applying Learning Curves
 - 1) To determine if it is profitable to enter an industry.
 - 2) To determine when profits will occur based on plant size and cumulative output.

- Estimates of future costs can be obtained from a cost function, which relates the cost of production to the level of output and other variables that the firm can control.
- Suppose we wanted to derive the total cost curve for automobile production.

for the Automobile Industry

A linear cost function (does not show the U-shaped characteristics) might be:

$$VC = \beta Q$$

- The linear cost function is applicable only if marginal cost is constant.
 - ullet Marginal cost is represented by eta

If we wish to allow for a U-shaped average cost curve and a marginal cost that is not constant, we might use the *quadratic* cost function:

$$VC = \beta Q + \gamma Q^2$$

If the marginal cost curve is not linear, we might use a *cubic* cost function:

$$VC = \beta Q + \gamma Q^2 + \delta Q^3$$

- Difficulties in Measuring Cost
 - 1) Output data may represent an aggregate of different type of products.
 - 2) Cost data may not include opportunity cost.
 - Allocating cost to a particular product may be difficult when there is more than one product line.

- Cost Functions and the Measurement of Scale Economies
 - Scale Economy Index (SCI)
 - → E_C = 1, SCI = 0: no economies or diseconomies of scale
 - ♦ E_C > 1, SCI is negative: diseconomies of scale
 - \bullet E_C < 1, SCI is positive: economies of scale

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Cost Functions for Electric Power

Scale Economies in the Electric Power Industry

Output (million kwh)	43	338	1109	2226	5819
Value of SCI, 1955	.41	.26	.16	.10	.04

Average Cost of Production: www.kaoyancas.net in the Electric Power Industry

Cost Functions for Electric Power

- Findings
 - Decline in cost
 - Not due to economies of scale
 - Was caused by:
 - Lower input cost (coal & oil)
 - Improvements in technology

A Cost Function for the 高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Savings and Loan Industry

The empirical estimation of a long-run cost function can be useful in the restructuring of the savings and loan industry in the wake of the savings and loan collapse in the 1980s.

A Cost Function for the 高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Savings and Loan Industry

- Data for 86 savings and loans for 1975 & 1976 in six western states
 - Q = total assets of each S&L
 - LAC = average operating expense
 - Q & TC are measured in hundreds of millions of dollars
 - Average operating cost are measured as a percentage of total assets.

A Cost Function for the 高参考价值的其题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Savings and Loan Industry

A quadratic long-run average cost function was estimated for 1975:

$$LAC = 2.38 - 0.6153Q + 0.0536Q^{2}$$

Minimum long-run average cost reaches its point of minimum average total cost when total assets of the savings and loan reach \$574 million.

A Cost Function for the 高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Savings and Loan Industry

- Average operating expenses are 0.61% of total assets.
- Almost all of the savings and loans in the region being studied had substantially less than \$574 million in assets.

A Cost Function for the 高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net Savings and Loan Industry

Questions

- 1) What are the implications of the analysis for expansion and mergers?
- 2) What are the limitations of using these results?

- Managers, investors, and economists must take into account the opportunity cost associated with the use of the firm's resources.
- Firms are faced with both fixed and variable costs in the short-run.

- When there is a single variable input, as in the short run, the presence of diminishing returns determines the shape of the cost curves.
- In the long run, all inputs to the production process are variable.

- The firm's expansion path describes how its cost-minimizing input choices vary as the scale or output of its operation increases.
- The long-run average cost curve is the envelope of the short-run average cost curves.

- A firm enjoys economies of scale when it can double its output at less than twice the cost.
- Economies of scope arise when the firm can produce any combination of the two outputs more cheaply than could two independent firms that each produced a single product.

- A firm's average cost of production can fall over time if the firm "learns" how to produce more effectively.
- Cost functions relate the cost of production to the level of output of the firm.

End of Chapter 7 The Cost of Production

完整版,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研