Chapter 5 Choice Under Uncertainty

完整版,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研

TOPICS TO DE DISCUSSED

- Describing Risk
- Preferences Toward Risk
- Reducing Risk
- The Demand for Risky Assets

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

- Choice with certainty is reasonably straightforward.
- How do we choose when certain variables such as income and prices are uncertain (i.e. making choices with risk)?

- To measure risk we must know:
 - 1) All of the possible outcomes.
 - 2) The likelihood that each outcome will occur (its probability).

- Interpreting Probability
 - The likelihood that a given outcome will occur

- Interpreting Probability
 - Objective Interpretation
 - Based on the observed frequency of past events

- Interpreting Probability
 - Subjective
 - ◆Based on perception or experience with or without an observed frequency
 - Different information or different abilities to process the same information can influence the subjective probability

Expected Value

- The weighted average of the payoffs or values resulting from all possible outcomes.
 - The probabilities of each outcome are used as weights
 - Expected value measures the central tendency; the payoff or value expected on average

- An Example
 - Investment in offshore drilling exploration:
 - Two outcomes are possible
 - ◆Success -- the stock price increase from \$30 to \$40/share
 - ◆Failure -- the stock price falls from \$30 to \$20/share

- An Example
 - Objective Probability
 - ◆100 explorations, 25 successes and 75 failures
 - ◆Probability (Pr) of success = 1/4 and the probability of failure = 3/4

Expected Value (EV)

An Example:

EV = Pr(success)(\$40/share) + Pr(failure)(\$20/share)

EV = 1/4 (\$40/share) + 3/4 (\$20/share)

EV = \$25/share

Given:

- Two possible outcomes having payoffs X₁
 and X₂
- Probabilities of each outcome is given by
 Pr₁ & Pr₂

Generally, expected value is written as:

$$E(X) = Pr_1X_1 + Pr_2X_2 + ... + Pr_nX_n$$

- Variability
 - The extent to which possible outcomes of an uncertain even may differ

Variability

- A Scenario
 - Suppose you are choosing between two part-time sales jobs that have the same expected income (\$1,500)
 - The first job is based entirely on commission.
 - The second is a salaried position.

Variability

- A Scenario
 - There are two equally likely outcomes in the first job--\$2,000 for a good sales job and \$1,000 for a modestly successful one.
 - The second pays \$1,510 most of the time (.99 probability), but you will earn \$510 if the company goes out of business (.01 probability).

Income from Sales Jobs

	Outcome 1		Outcome 2		
	Probability	Income (\$)	Probability	Income (\$)	Expected Income
Job 1: Commission	.5	2000	.5	1000	1500
Job 2: Fixed salary	.99	1510	.01	510	1500

Income from Sales Jobs

Job 1 Expected Income

$$E(X_1) = .5(\$2000) + .5(\$1000) = \$1500$$

Job 2 Expected Income

$$E(X_2) = .99(\$1510) + .01(\$510) = \$1500$$

- While the expected values are the same, the variability is not.
- Greater variability from expected values signals greater risk.
- Deviation
 - Difference between expected payoff and actual payoff

Deviations from Expected Income (\$)

	Outcome 1	Deviation	Outcome 2	Deviation
Job 1	\$2,000	\$500	\$1,000	-\$500
Job 2	1,510	10	510	-900

Variability

- Adjusting for negative numbers
- The standard deviation measures the square root of the average of the squares of the deviations of the payoffs associated with each outcome from their expected value.

Variability

The standard deviation is written:

$$\sigma = \sqrt{\Pr_1[X_1 - E(X)^2] + \Pr_2[X_2 - E(X)^2]}$$

Calculating Variance (\$)

Outcome 2

Deviation

Squared

Job 1	\$2,000	\$250,000	\$1,000	\$250,000	\$250,000	\$500.00
Job 2	1,510	100	510	980,100	9,900	99.50

Deviation

Squared

Deviation Standard Outcome 1

Deviation

Squared

The standard deviations of the two jobs are:

$$\sigma_1 = \sqrt{.5(\$250,000) + .5(\$250,000)}$$

$$\sigma_1 = \sqrt{\$250,000}$$

$$\sigma_1 = 500$$
 *Greater Risk

$$\sigma_2 = \sqrt{.99(\$100) + .01(\$980,100)}$$

$$\sigma_2 = \sqrt{\$9,900}$$

$$\sigma_2 = 99.50$$

The standard deviation can be used when there are many outcomes instead of only two.

Example

Job 1 is a job in which the income ranges from \$1000 to \$2000 in increments of \$100 that are all equally likely.

Example

Job 2 is a job in which the income ranges from \$1300 to \$1700 in increments of \$100 that, also, are all equally likely.

高参考价值的真题、答案、学长笔记、辅导班课程,访问: www.kaoyancas.net Outcome Probabilities for Two Jobs

- Outcome Probabilities of Two Jobs (unequal probability of outcomes)
 - Job 1: greater spread & standard deviation
 - Peaked distribution: extreme payoffs are less likely

- Decision Making
 - A risk avoider would choose Job 2: same expected income as Job 1 with less risk.
 - Suppose we add \$100 to each payoff in Job 1 which makes the expected payoff = \$1600.