高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

第3章 数字信号

中国科学技术大学 曾凡平

http://staff.ustc.edu.cn/~billzeng

第2章 内容提要

- 采样定理
 - 秦奎斯特采祥革=2W
 - 秦奎斯特频率:采祥速率的一年 $f_N=f_S/2$
 - 欠采样及呈现频率的确定(假频和真频)
 - 不失真欠采样的条件
 - 过采样的好处
- A/D转换及量化($Q=R/2^N$)误差、比特率
- D/A转换及重建信号的时延(延迟)效用
- 抗混叠滤波器、抗镜像滤波器的作用

关于重构式的证明

- 见《计算机控制基础》pp21-26
- 中国科学技术出版社,李嗣福 等编著 2001年9月.

本章内容

- 所有数字信号处理的对象都是数字信号。本章 主要内容如下:
- 1. 确定数字信号的图形表示和符号
- 2. 解释数字信号的时移和尺度变换
- 3. 介绍重要的基本数字函数
- 4. 建立模拟频率和数字频率的对应关系
- 5. 解释合成数字信号
- 6. 介绍数字图像

3.1 数字信号的图示

- 数字信号大多是模拟信号按一定时间间隔进行采 样,并经模/数转换得到的。
- 在图形上,用顶部带圆圈的竖线表示数字信号, 横坐标表示采样序号(所经过的采样周期的数 目),竖线的高度表示数字信号对应的量化电平 (即数值的大小)。
- 用量化电平表示数字信号比用数字代码更好,因为量化电平能更直观地表示信号的增减,而数字代码则不能。

例3.1 数字信号的图示实例-"棒棒糖"式

例3.1 部分语音信号在0-1 V范围内取值。采用表3.1所给三比特量化方案进行A/D转换,得到一系列数字代码: 010 110 000 001 011 100 110 111 100 010。画出该数字信号。

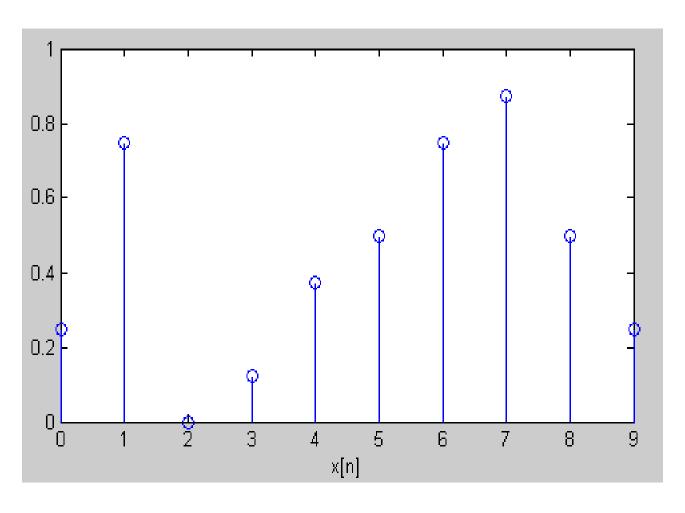

解:

图3.1表示该数字信号的图形,此信号只能取有限个数的值,这些数值就是表3.1中的量化电平,它与数字代码相对应。一旦量化,就不能再取其他任何数值。

表3.1 三比特量化表 Q=0.125

数字代码	量化电平(V)	对应此数字代码的模拟输入范围(V)
000	0.000	$0.000 \le x < 0.0625$
001	0.125	$0.062\ 5 \leqslant x < 0.187\ 5$
010	0.250	$0.1875 \le x < 0.3125$
011	0.375	$0.3125 \le x < 0.4375$
100	0.500	$0.437 \le x < 0.562 \le$
101	0.625	$0.5625 \le x < 0.6875$
110	0.750	$0.687.5 \le x < 0.812.5$
111	0.875	$0.812.5 \le x \le 1.000$

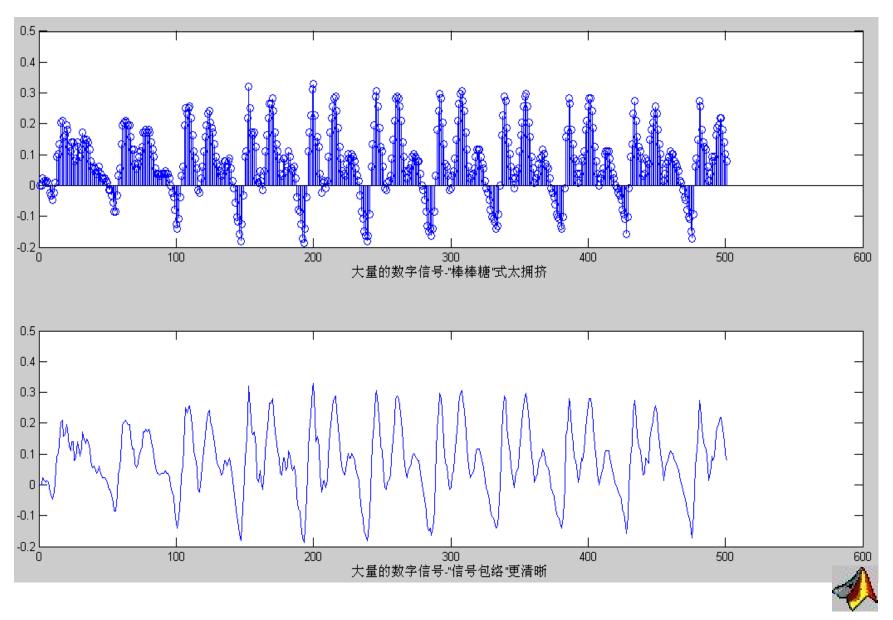
图3.1

第3章 数字信号

8

例3.1 的Matlab程序

```
x = [];
xmax = bin2dec('1000');
x(1) = bin2dec('010')/xmax; x(2) = bin2dec('110')/xmax;
x(3) = bin2dec('000')/xmax; x(4) = bin2dec('001')/xmax;
x(5) = bin2dec('011')/xmax; x(6) = bin2dec('100')/xmax;
x(7) = bin2dec('110')/xmax; x(8) = bin2dec('111')/xmax;
x(9) = bin2dec('100')/xmax; x(10) = bin2dec('010')/xmax;
x(10) = bin2dec('100')/xmax;
```


大量的数字信号的图示-信号包络

 当采样速率很高或必须描述大量采样时,"棒棒糖" 式的表示方法过于拥挤,这时用光滑曲线连接竖 线的顶点,画出的是信号包络,而不是单个点, 见图3.2。

见下一页

注: Matlab用wavread从音频文件中读数据

注: "doc wavread" 可以获得关于wavread的帮助

完整版,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研

3.2 数字信号的符号

- x[n]: n为整数,表示当前采样的编号(序号)。 例如, x[5]表示信号第5个采样时刻的值。所有 的采样时刻的值集合便是**序列**x[n]
- x[n-N]: 整个序列右移N个采样点,即采样值滞后N个采样周期(采集过去的**历史**数据)
- x[n+N]: 整个序列左移N个采样点,即采样值超前N个采样周期(采集将来的数据)
- **超前和筛后称为信号的时移**,常用于差分方程 和卷积表达式中。
- 注: x[n]、x[n-N]、x[n+N], n 表示当前时刻

尺度变化

- x[kn]: k为整数常数,是信号的尺度变化 (从信号中选取每第k个采样点)。尺度变换用于抽取和小波变换。
- 例3.2 对图3.3中的信号,假设n=0以前和n=9以后的所有采样值均为0。这个信号用尾部随家的形式绘出。求下列

各值:

- 1. $x[\theta]$
- 2. x[5]
- 3. x[n-1]
- 4. x[n-2]
- 5. x[2n]
- 6. x[3n]

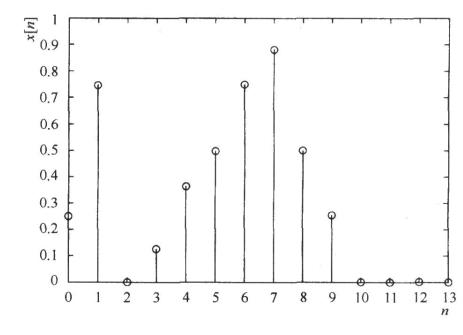
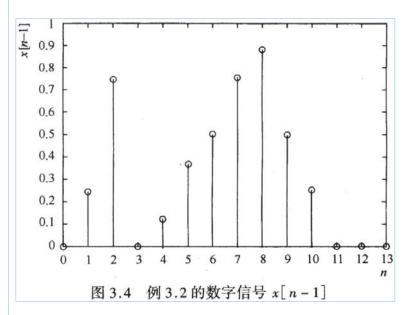



图 3.3 例 3.2 的数字信号 x[n]

解:

- a. 该处采样值为x[0]=0.25。x[n]指整个信号,x[0]指信号中某一单个采样值。
- b. n=5处采样值为x[5]=0.5。
- c. x[n-1]的图形可通过将x[n]右移一个单位得到,这点可通过表3.2证实。采样编号和信号值x[n]列在前两行,用来确定后两行的内容,以表中黑体列为例,当n=2时,n-1=1,所以x[n]=x[2]=0,而x[n-1]=x[1]=0.75。于是当n=2时,x[n-1]=0.75。用同样方法可分析表中其他点,结果是把所有的采样值都向右移一个时间单位。比较图3.4与图3.3,可以明显看出这一点,图3.4给出的是x[n-1]对n的信号图。

				450000	表	3.2	例 3.2	中 x[n – 1]	的计算	軍		÷		A. C.	
n	- 2	- 1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
x[n]	0.0	0.0	0.25	0.75	0.0	0.125	0.375	0.5	0.75	0.875	0.5	0.25	0	0	0	0
n-1	- 3	- 2	- 1	0	1	2	3	4	5	6	7	8	9	10	11	12
x[n-1]	0.0	0.0	0.0	0.25	0.75	0.0	0.125	0.375	0.5	0.75	0.875	0.5	0.25	0.0	0.0	0.0

第3章 数字信号

14

例3.2的图形

- d. 信号x[n-2]对于x[n]来 说,右移了两个时间单 位,比较图3.5和图3.3可 以看出。
- e.信号x[2n]可由表3.3得到。n的两倍选出信号的隔点采样值,如图3.6所示。
- f.信号x[3n]从原信号中选取每第3个采样点,如图 3.7所示。

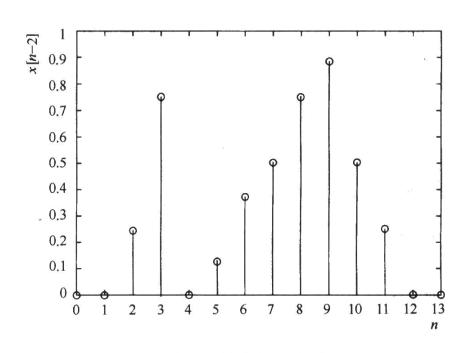
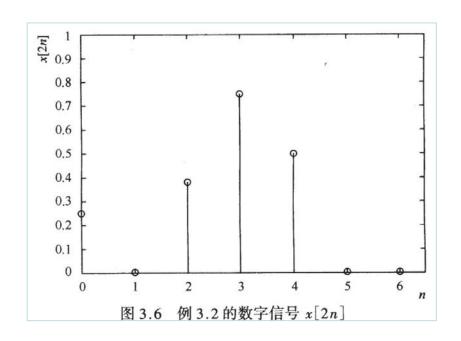



图 3.5 例 3.2 的数字信号 x[n-2]

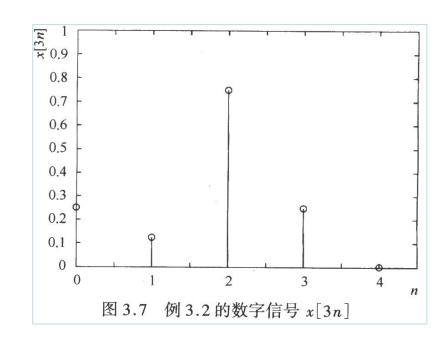
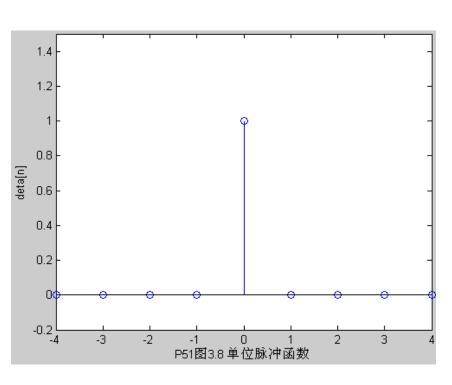


表 3.3 例 3.2 中 x[2n]的计算

				\$5666 St. 15515 St. 1605			The second secon
n	0	1	2	3	4	5	6
x[n]	0.25	0.75	0.0	0.125	0.375	0.5	0.75
2 <i>n</i>	0	2	4	6	8	10	12
x[2n]	0.25	0.0	0.375	0.75	0.5	0.0	0.0

第3章 数字信号


16

3.3 数字函数(常用的数字函数)

- 3.3.1 脉冲函数
 - 单位脉冲函数是数字域的基本函数。事实上,所有数字信号都能从脉冲函数构造出来。单位脉冲函数(也称δ函数)(unit impulse function)除了在 n=0处有一值外,其他点处均为零。单位脉冲函数定义为:

$$\begin{cases} \delta[n] = \begin{cases} 0 & n \neq 0 \\ 1 & n = 0 \end{cases} \\ \delta[n-N] = \begin{cases} 0 & n \neq N \\ 1 & n = N \end{cases} \end{cases}$$


```
N = 4;

n = [-N:N];

xn = [n==0];

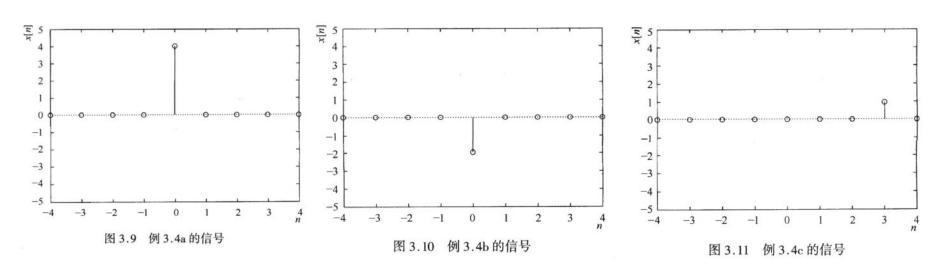
figure(8);

stem(n,xn);

axis([-N,N, -0.2, 1.5]);
```

例 3.3 确定 $\delta[0]$, $\delta[3]$ 和 $\delta[-2]$ 的值。

解:


用式(3.1)的定义,可求出脉冲函数 $\delta[n]$ 在任何点的值。从式(3.1)或图 3.8 可得出, $\delta[0]$ = 1, $\delta[3]$ = 0 及 $\delta[-2]$ = 0。

例 3.4 画出下列信号的图形:

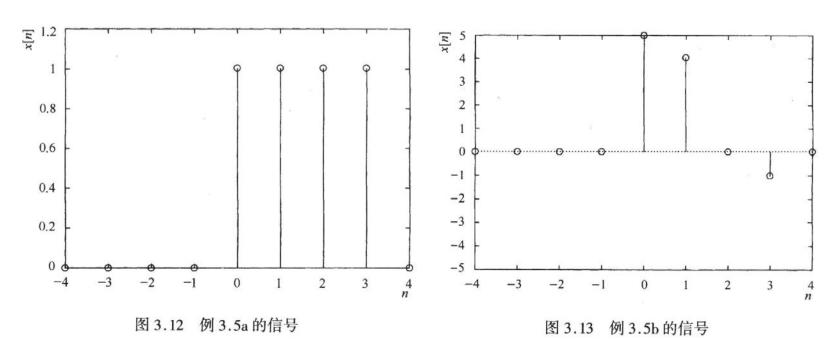
a.
$$x[n] = 4\delta[n]$$

b.
$$x[n] = -2\delta[n]$$

c.
$$x[n] = \delta[n-3]$$

第3章 数字信号

19


例 3.5 画出下列信号:

a.
$$x[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$$

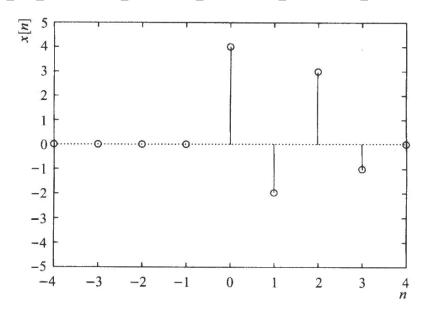
b.
$$x[n] = 5\delta[n] + 4\delta[n-1] - \delta[n-3]$$

解:

- a.信号图示于图 3.12。
- b.信号图示于图 3.13。

第3章 数字信号

20


例 3.6 数字函数为 $x[n] = \delta[n] + 0.5\delta[n-1] + 0.2\delta[n-2]$ 。写出函数 x[n-1]的表达式。解:

将所有的 n 用 n-1 代替得到: $x[n-1] = \delta[n-1] + 0.5\delta[n-2] + 0.2\delta[n-3]$ 。

例3.7 用一个函数描述图3.14中的图形,假设窗口外所有 采样值为0。

解:任何数字信号都能写成脉冲函数之和的形式。4个非零采样值构成此函数。其数学形式为:

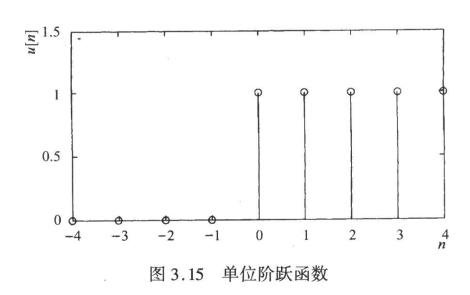
$$x[n] = 4\delta[n] - 2\delta[n-1] + 3\delta[n-2] - \delta[n-3]$$

第3章 数字信号

21

用单位脉冲表示任意的数字序列

• 推广到一般情况,对于任意信号x[n],有:

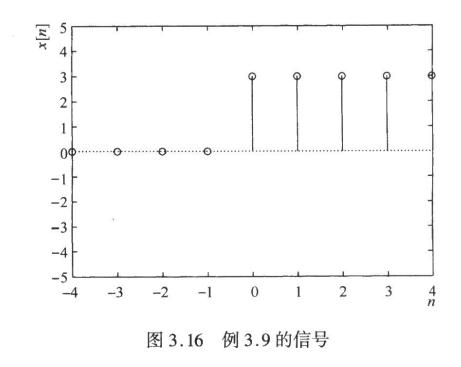

$$x[n] = x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \cdots$$

• 其中x[0], x[1], x[2], …代表信号的采样值

3.3.2 阶跃函数: 从某采样点起采样值为常数

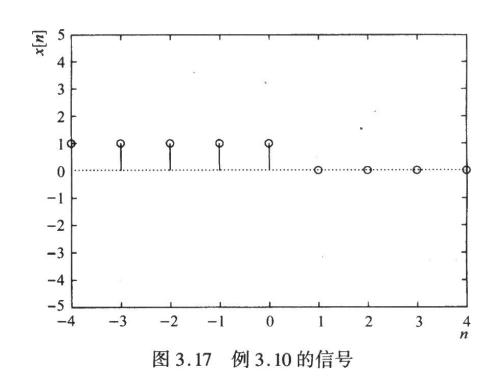
$$\begin{cases} u[n-N] = \begin{cases} 0 & n < N \\ 1 & n \ge N \end{cases} \\ u[n] = \begin{cases} 0 & n < 0 \\ 1 & n \ge 0 \end{cases}$$
 从考察点起的采样值为1: 单位阶跃

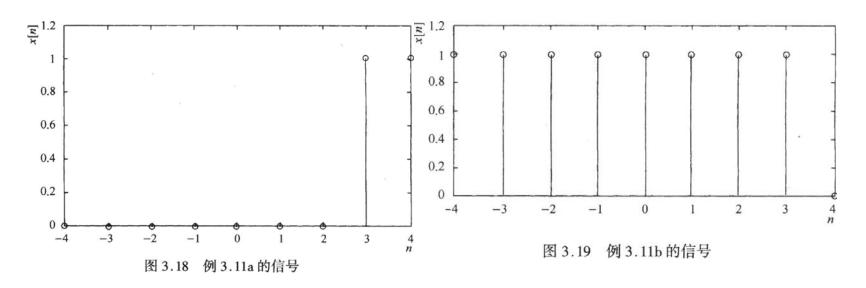
• 其中字母u表示阶跃函数。 图3.15中为u[n]的前几 个非零采样值。单位阶 跃函数常用来表示一个 "接通"过程。例如,5 v 直流电源接通后的采样 值可以表示为5u[n]。


例3.8 确定*u*[-1], *u*[0]和*u*[1]的值。

解:

• 根据式(3.2)或图3.15有 u[-1]=0,u[0]=1及u[1]=1。


例3.9 画出信号*x*[*n*]=3*u*[*n*] 的图形。


解: 图3.16中的信号是基本 阶跃函数放大后的信号。

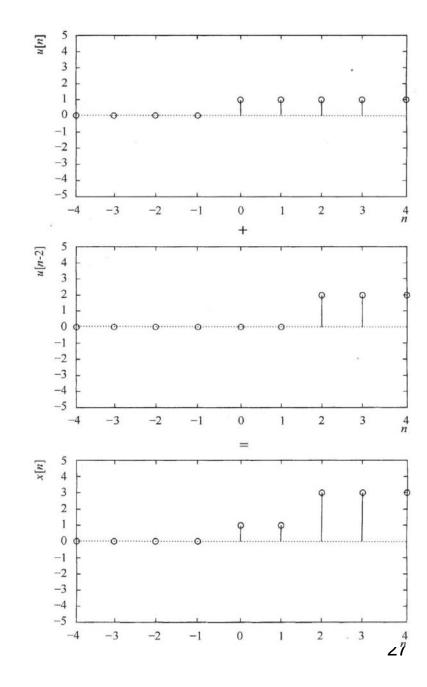
例3.10 画出x[n]=u[-n]的图形解:

• 当n为正时,(-n)为负,对于每一个负的标号,阶跃函数为零;当n为负时,(-n)为正,阶跃函数对于每一个正的标号值为1;零点的值不变。如图3.17所示,函数u[-n]是u[n]以直线n=0为对称轴的对称图形。

例3.11 画出下列数字信号:

- a. x[n]=u[n-3]
- b. x[n]=u[3-n]

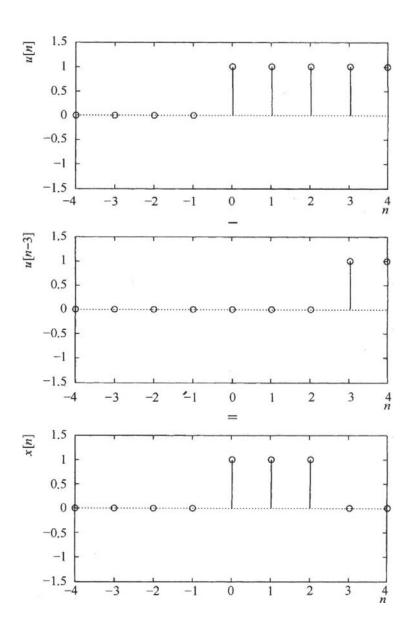
解:


- a. u[n-3]和u[n]完全相同,只是右移了三个单位,如图3.18所示。当 $n \ge 3$ 时,x[n]的所有采样值为1。每一点的值都可通过直接计算得到证实。比如,x[4]=u[4-3]=u[1]=1,而x[2]=u[2-3]=u[-1]=0。
- b. 信号u[3-n]可以写成u[-(n-3)]。它可通过将u[-n]右移三个单位得到,如图3.19所示。从1到0的变化是在3-n=0(即n=3)处。

例3.12

画出x[n]=u[n]+2u[n-2]的图形。

解:


• 该信号是由 *u*[*n*] 和 2*u*[*n*-2] 逐点相加得到的,如图3.20所示。

例**3.13** 画出x[n] = u[n]u[n-3]的图形。

解:

• 该信号是由 u[n] 减去 u[n-3]得到的,如图 3.21所示。结果反映 了被采样的直流电平 开启后又再次关闭的情况。

例3.14 用一个函数描述 图3.22中的信号,假 设n<-4的值为零, n>4的值为-4。

解:

• 该信号可用脉冲函数 或阶跃函数描述,但 用阶跃函数最好:

x[n] = 2u[n] - 6u[n-2]

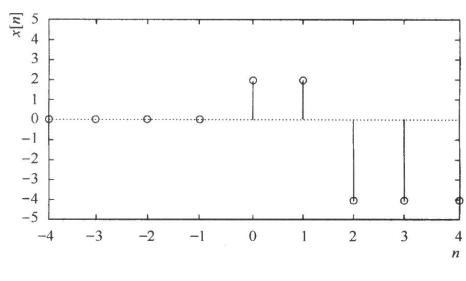


图 3.22 例 3.14 的信号

阶跃函数和脉冲函数的关系

阶跃函数和脉冲函数之间具有联系,这种联系非常有用。阶跃函数可写成脉冲函数之和的形式,脉冲函数可写成阶跃函数之差的形式:

$$u[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3] + \dots = \sum_{m=0}^{\infty} \delta[n-m]$$
$$\delta[n] = u[n] - u[n-1]$$
$$\delta[n-N] = u[n-N] - u[n-N-1]$$

3.3.3 幂函数和指数函数

数字幂函数的定义为:

$$x[n] = A\alpha^{\beta n}$$

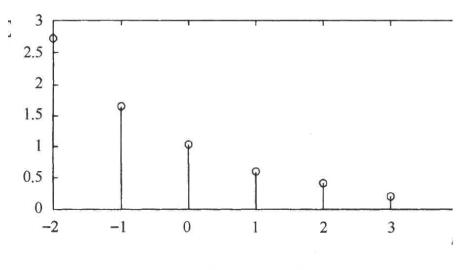
指数函数的特例为:

$$x[n] = Ae^{\beta n}$$

其中 α 设为无理数, $e=2.718\ 28$ …。当 $\beta>0$ 时,这些函数的值递增;当 $\beta<0$ 时,函数值递减。A决定了n=0处的函数值。

例3.16

例 3.16 画出信号 $x[n] = e^{-0.5n}$ 的图形。



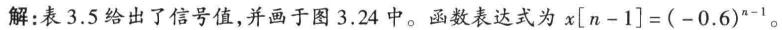
解:

对于任意 n 值,可以计算出信号值。表 3.4 给出了 $-2 \le n \le 4$ 的函数值,并画于图 3.23 中。

3.4 例 3.16 中信号 $x[n] = e^{-0.5n}$ 的

n	x[n]
- 2	2.718 3
-1	1.648 7
0	1.000 0
1	0.606 5
2	0.367 9
3	0.223 1
4	0.135 3
	N

,图 3.23 例 3.16 的信号


第3章 数字信号

32

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

例 3.17 信号定义为 $x[n] = (-0.6)^n$ 。

- a. 画出信号的图形。
- b. 写出时移信号 x[n-1]的表达式。

x[n]	n
2.777	- 2
-1.666	- 1
1.000	0
- 0.600	1
0.360	2
-0.216	3
0.129	4

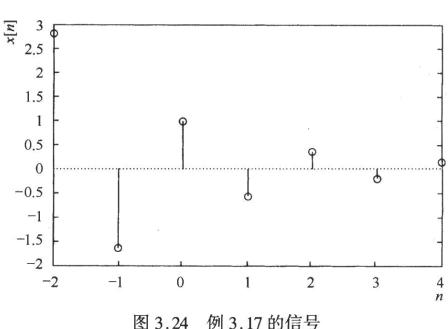


图 3.24 例 3.17 的信号

复指数

复指数 $x[n] = e^{j\theta n}$ 在数字信号处理中具有很重要的位置。它出现在离散时间傅里叶变换 (DTFT)、离散傅里叶级数(DFS)以及离散傅里叶变换(DFT)的定义中。式(A.4)中的欧拉恒等式为 $e^{j\theta} = \cos\theta + j\sin\theta$ 。运用该恒等式,可将复指数分解为:

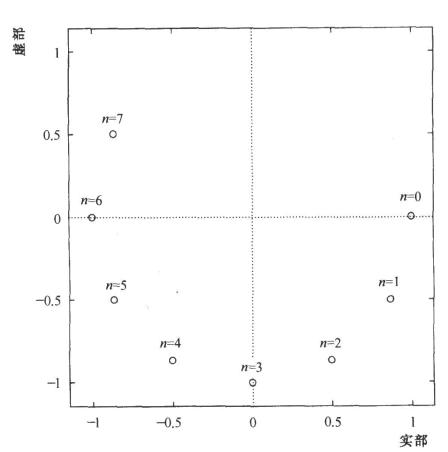
$$x[n] = \cos\beta n + j\sin\beta n$$

这个信号对每个 n 的值都是复值。此外,如附录 A.13.2.5 所述,复数 $e^{j\beta n} = \cos\beta n + j\sin\beta n$,在 复平面上距原点的距离恒为 1。对于 $e^{-j\beta n}$,可根据欧拉恒等式的另一种形式 $e^{-j\theta} = \cos\theta - j\sin\theta$

[见式(A.5)],将其分解为
$$e^{-j\beta n} = \cos\beta n - j\sin\beta n$$
。

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

画出数字信号 $x[n] = e^{-j\pi n/6}$ 的前八个采样点。 例 3.18 解:


该信号可用欧拉恒等式的另一种形式来计算:

$$x[n] = \cos\left(\frac{\pi n}{6}\right) - j\sin\left(\frac{\pi n}{6}\right)$$

表 3.6 例 3.18 中信号 $x[n] = e^{-i\pi n/6}$ 的值

n	x[n]				
0	1.000 0				
1	$0.866\ 0 - j0.500\ 0$				
2	$0.500\ 0 - j0.866\ 0$				
3	-j1.0000				
4	-0.500 0 - j0.866 0				
5	-0.866 0 - j0.500 0				
6	-1.000 0				
7	- 0.866 0 + j0.500 0				

第3章 数字信号

图 3.25 例 3.18 中信号 $x[n] = e^{-j\pi n/6}$ 的图

完整版,请访问www.kaoyancas.net 科大科院考研网,专注于中科大、中科院考研

3.3.4 正弦和余弦函数

数字正弦函数在测试单一频率输入情况下的系统响应时非常有用。数字正弦和余弦函数的形式为:

$$\begin{cases} x[n] = A \cdot \sin(n \cdot \Omega) \\ x[n] = A \cdot \cos(n \cdot \Omega) \end{cases}$$

• A为振幅, Ω为数字序列重复的频率:

数字频率

图3.26 数字正弦信号实例

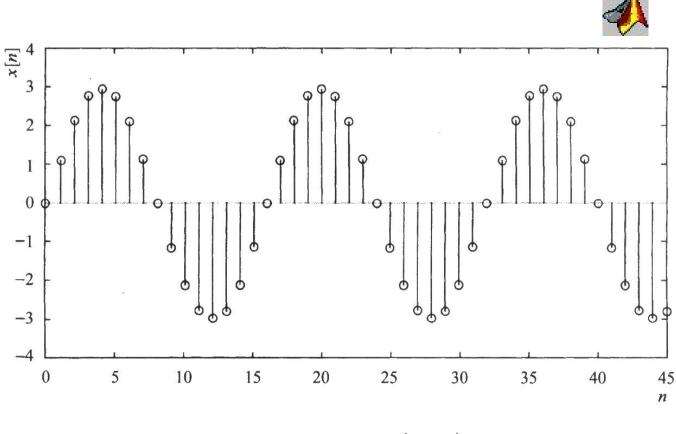


图 3.26 信号 $x[n] = 3\sin\left(n\frac{\pi}{8}\right)$ 的图

数字频率与模拟频率的关系

• 众所周知,模拟正弦和余弦是周期函数,但数 **写正弦和余弦不一定是周期函数**。它取决于数 字频率的取值(本质上是采样频率或采样周 期)。对如下对信号以周期Ts采样,则:

$$x(t) = Asin(\omega t)$$

$$x[n] = x(nT_s) = Asin(\omega nT_s) = Asin(n(\omega T_s))$$

$$\Rightarrow \Omega = \omega T_s = 2\pi f / fs \neq 2\pi \frac{f}{fs}$$

此为数字频率 Ω 与模拟频率 f 的关系

数字正弦为周期信号的条件

• 若数字序列为周期函数:假设每N次采样重复一次数字值,则对应的模拟信号重复M次,所以

$$NT_s = MT \Rightarrow N\frac{1}{f_s} = M\frac{1}{f} \Rightarrow \frac{N}{M} = \frac{f_s}{f} = \frac{2\pi}{\Omega}$$

- 其中N为数字序列重复所需的采样点数,M是当N个采样点完成时模拟信号所经过的周期数。要找N和M,分数 $2\pi/\Omega$ 必须化简为最简形式。
- 故数字序列是否重复只取决于 Ω ,本质上取决于采样周期和采样频率。N 称为数字周期
- 对正弦余弦函数要特别注意是否为周期函数。

图3.27 周期或非周期数字信号

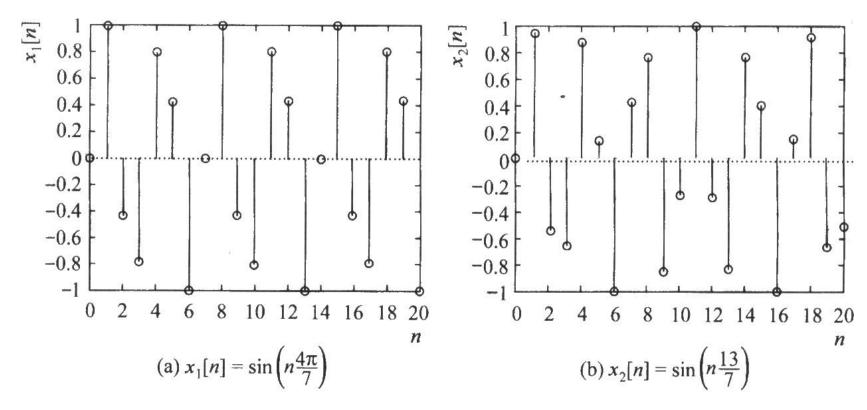


图 3.27 周期或非周期数字正弦

第3章 数字信号

- 例3.19 数字信号为x[n]=cos(2n)。
 - a. 此数字序列是否为周期序列。
 - b. 求出该序列的前八个采样值。

解:

- a.由于x[n]=Acos(n Ω), Ω = 2 rad,2 π / Ω = π ,此数 为无理数,不能表示为整数之比,因而该数字序列是 非周期的。
- b.如表3.7和图3.28所示,在前八个采样点内无重复。即使取更多的采样点,序列仍不会重复。

表 3.7 例 3.19 中的信号值

	n	x[n]						
***	0	1.000 0						
	1	-0.416 1						
	2	-0.653 6						
	3	0.960 2						
	4	-0.145 5						
	5	-0.839 1						
	6	0.843 9						
	7	0.1367						

例3.19的信号不 是周期信号,无 论经过多少个采 样点,数字序列 均不可能重复。

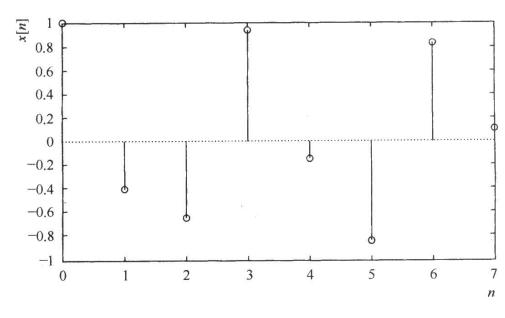


图 3.28 例 3.19 的信号

- 例 3.20 数字信号为 $x[n] = \cos(n4\pi/5)$ 。
 - a. 该序列是否为周期序列?
 - b. 求出序列的前八个采样值。

解:

- a. 数字频率为 $\Omega = 4\pi/5$,因而 $2\pi/\Omega = 5/2$ 。N = 5,M = 2,表明序列每5个采样点开始重复,且这5个采样点处于被采样模拟信号的两个完整周期上。
- b.注意表 3.8 和图 3.29 中所给出的计算结果及序列图,序列每 5 个采样点重复一次。

表 3.8	伤 3	20	由	协	信	무	估
1 J. U		. 20		ни		7	Œ

Substitute of the state of the substitute of the	2
x[n]	n
1.000 0	0
-0.8090	1
0.309 0	2
0.309 0	3
-0.8090	4
1.000 0	5
-0.809 0	6
0.309 0	7

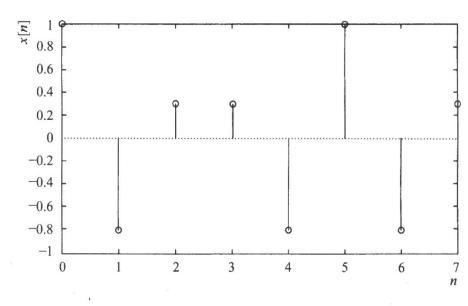
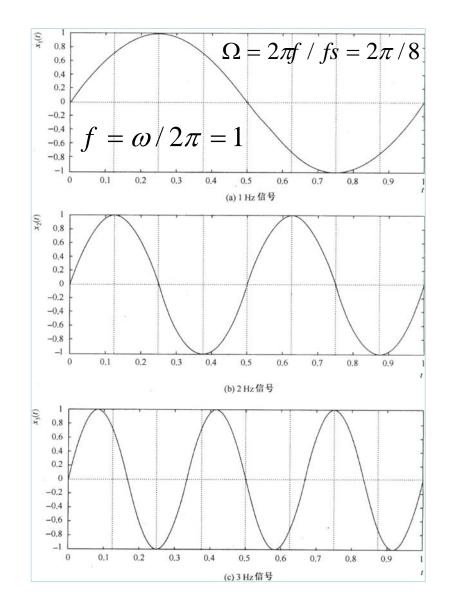


图 3.29 例 3.20 的信号

第3章 数字信号


• **例3.21** 图3.30画出了下列 信号:

$$a. x_1(t) = \sin(2\pi t)$$

$$b. x_2(t) = \sin(4\pi t)$$

$$c. x_3(t) = \sin(6\pi t)$$

• 所有信号均以fs=8(次/秒)的速率进行采样。采样点用实竖线标记。对于每种情况,考察采样信号的周期性。

• 数字正弦函数的一般形式为:

$$x[n] = A \sin(n\Omega + \theta)$$

 $x[n] = A \cos(n\Omega + \theta)$
相位 θ 的单位为弧度,
它带来时域上的位移

$$n_0 = -rac{ heta}{\Omega}$$

- n₀为正,数字序列向 右移;
- n₀为负,序列左移。

信号相移实例

例3.22 画出 x1[n]=sin(n2 π / 9) 和x2[n]=sin(n2 π

/9-3 π / 5)的图形。

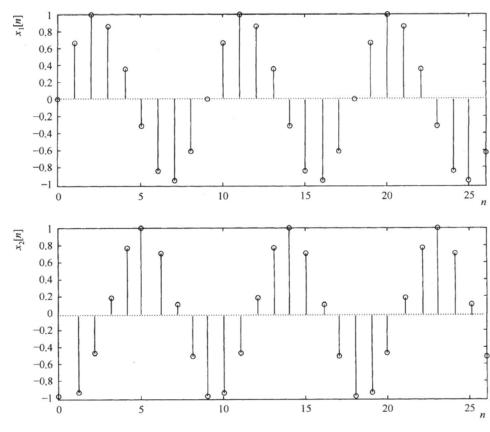


图 3.31 例 3.22 的数字正弦信号相移

3.4 合成函数

- 合成函数是函数的组合,这样的组合可以灵活地 定义前面章节未定义的信号。计算一个合成函 数,首先构造基本函数,然后按要求将基本函数 进行加、减或乘法运算。
- 下面给出4个合成函数的例子。

高参考价值的真题、答案、学长笔记、辅导班课程,访问:www.kaoyancas.net

例 3.23 画出信号 x[n] = u[n]u[3-n]的图形。

解:

此信号为 u[n]和 u[3-n]之积(如图 3.32 所示),两信号逐点相乘得 x[n]。 x[n]自然 也可用脉冲函数之和表示为:

$$x[n] = \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]$$

- **例 3.24** 数字信号 $x[n] = e^{-2n}u[n]$ 。
 - a. 画出该信号的图形。
 - b. 写出 x[n-2]的表达式。

解:

- a. 如前例,构造该信号最简单的方法是找出基本函数并相乘。u[n]在 n=0 处"接通"函数 e^{-2n} 。因为 n<0 时,u[n]为 0,所以 x[n]在这一范围也为零。对于 $n\geq0$ 时,u[n]为 1,所以在这一范围,x[n]的采样值与 e^{-2n} 的采样值相同,如图 3.33 所示。
- b. 位移后的信号为 $x[n-2] = e^{-2(n-2)}u[n-2]$ 。

第3章 数字信号

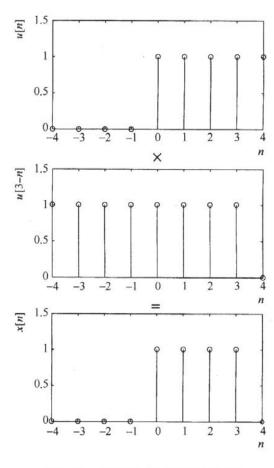


图 3.32 例 3.23 阶跃函数的乘积

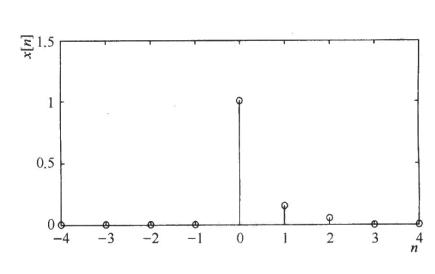
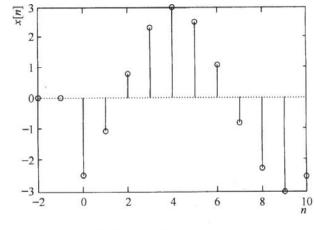
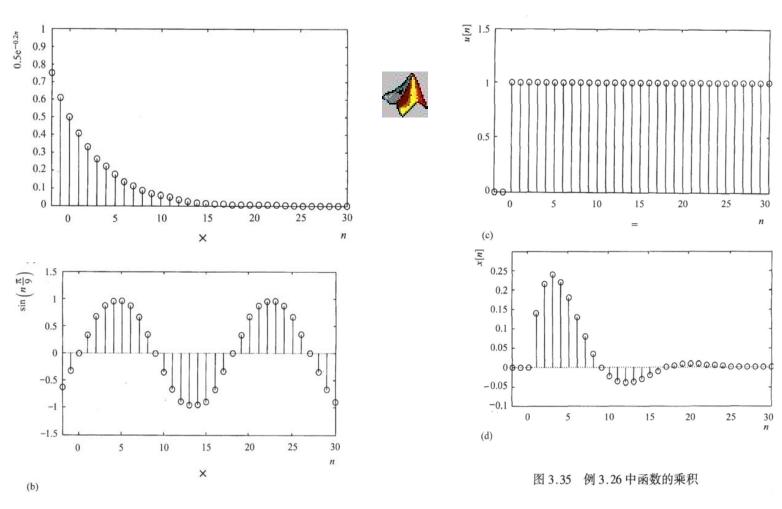



图 3.33 例 3.24 的"接通"函数

例 3.25 画出信号 $x[n] = 3\sin(n\pi/5 - 1)u[n]$ 的图形解:

正弦波和阶跃函数相乘,得到图 3.34 中的信号。

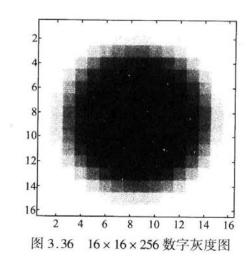

图 3.34 例 3.25 的信号

例 3.26 画出数字信号 $x[n] = 0.5e^{-0.2n}\sin(n\pi/9)u[n]$ 的图形。

解:

如图 3.35(d)所示,x[n]由(a),(b),(c)中三个信号的乘积构成。由于 x[n]为一衰减指数函数与一正弦函数之积,故称其为阻尼正弦(damped sinusoid)函数。

Damped sinusoid 的图形


第3章 数字信号

3.5 二维数字信号

- x[m][n]: m行n列的数字值。黑白图像的每个点对 应的数字信号为该点的灰度(亮度)级。
- 彩色图像每个点对应的数字信号值为红绿蓝三基色亮度的大小。

- 描述图像要用到二维数字信号。二维数字信号是数字矩阵(或数字栅)(matrix),矩阵的每一个数对应数字图像的一个像素(pixel),它记录了像素位置上图像的颜色。
- 在黑白图像x中, x[m, n]记录了第m行n列像素的 灰度级(gray scale level)。对于8比特的黑白图像, 有28=256个灰度级, 所以每个灰度级可在0(黑)到255(白)中取值。
- 灰度图案产生了图形的形状,如图3.36所示。具有16行16列像素的图像,当每个像素为8比特时,该图像便可描述为16×16×8比特(或16×16×256)。

数字灰度图的例子

								列							
223	208	194	182	172	164	159	158	159	164	172	182	194	208	223	240
208	191	176	163	151	143	137	135	137	143	151	163	176	191	208	225
194	176	159	144	131	121	115	113	115	121	131	144	159	176	194	213
182	163	144	128	113	101	93	90	93	101	113	128	144	163	182	202
172	151	131	113	96	81	71	68	71	81	96	113	131	151	172	193
164	143	121	101	81	64	50	45	50	64	81	101	121	143	164	186
159	137	115	93	71	50	32	23	32	50	71	93	115	137	159	182
158	135	113	90	68	45	23	0	23	45	68	90	113	135	158	180
159	137	115	93	71	50	32	23	32	50	71	93	115	137	159	182
164	143	121	101	81	64	50	45	50	64	81	101	121	143	164	186
172	151	131	113	96	81	71	68	71	81	93	113	131	151	172	193
182	163	144	128	113	101	93	90	93	101	113	128	144	163	182	202
194	176	159	144	131	121	115	113	115	121	131	144	159	176	194	213
208	191	176	163	151	143	137	135	137	143	151	163	176	191	208	225
223	208	194	182	172	164	159	158	159	164	172	182	194	208	223	240
240	225	213	202	193	186	182	180	182	186	193	202	213	225	240	255

第3章 数字信号

图 3.37 图 3.36 数字图像灰度值

• 对于彩色图像,每个像素用三个数描述,分别表示红、绿、蓝成分。

• 图3.38是一个含有较多像素的图像。该图像为829行1173列,每个像素有8比特的灰度值。因而,此图像为: 829×1173×256。

第3章 数字信号

小结

- 1.数字信号 x[n]通过它的量化电平来表示,在每个采样时刻 n,用顶部带有圆圈的竖线来描述其图形。
- 2.函数 x[n-m] 是将 x[n] 右移 m 个单位所得到的结果。函数 x[kn] 从 x[n] 中选出每第 k 个采样点。
- 3.脉冲函数在 n = 0 处值为 1,其他处皆为 0。所有数字信号均可表示为时移脉冲函数之和的形式。
- 4. 阶跃函数 u[n]在 n < 0 时值为 0, n > 0 时值为 1。
- 5.指数函数 $Ae^{\beta n}$ 在 $\beta > 0$ 时递增,当 $\beta < 0$ 时递减。复指数 $e^{i\beta n}$ 可用欧拉恒等式表示为 $\cos\beta n + i\sin\beta n$ 。
- 6.仅当 $2\pi/\Omega = N/M(N$ 为序列的数字周期)(即为整数之比)时,数字正弦函数 $A\sin(n\Omega)$ 和余弦函数 $A\cos(n\Omega)$ 才是周期的。有相移时,正弦函数变为 $A\sin(n\Omega+\theta)$ 和 $A\cos(n\Omega+\theta)$ 。
- 7.数字频率 Ω 与模拟频率 f 的关系为 Ω = $2\pi f/f_s$ 。
- 8.合成数字信号可通过数字信号的加、减、乘运算组合而成。
- 9. 数字图像是二维数字信号。灰度图像的每一像素用一个灰度级记录其色调。

第3章 数字信号

第3章作业

7, 12, 17, 18, 20, 23