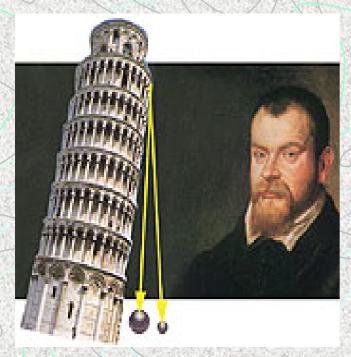


杨维纮

中国科学技术大学

绪论 第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章

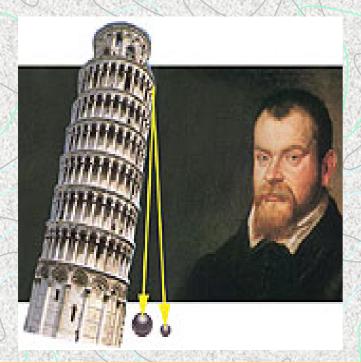
第十章


第十一章

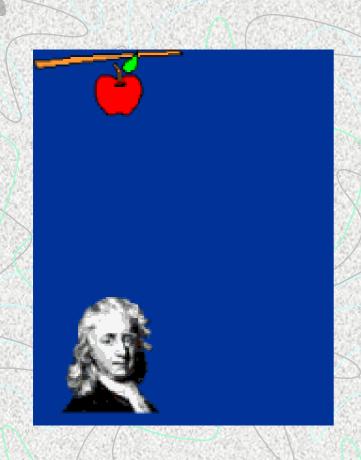
质点运动学 质点动力学 非惯性参考系 动量定理 动能定理 角动量定理 万有引力 刚体力学 振动和波 流体力学 相对论

培养物理直观

大师们是如何想出物理定律来的?


Galileo and falling cannonballs. 1856.

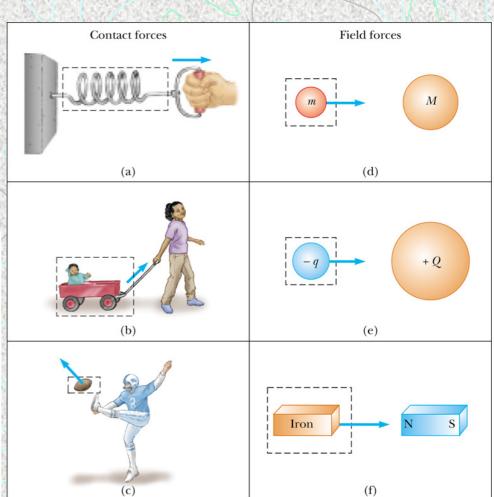
培养物理直观


引力质量=惯性质量意义: 广义相对论!

Galileo and falling cannonballs. 1856.

学物理的过程就是欣赏天才的过程

"Nothing yel. ... How about you, Newton?"


© 2002 Brooks Cole Publishing - a division of Thomson Learning

培养物理直观

法拉第力线

引力与电磁力的相似性物理机制?

20年代末, Heisenberg 对哲学家魏茨 塞克说:

没有丰富的当代物理学知识,是不能理解哲学的。

你要是不愿成为最落后的人,就应该马上去学物理。

Newton and Einstein: the greatest philosophers in history

一、什么是物理学(研究对象)

物理学是探讨物质结构、运动基本规律和相互作用的科学。

随着科学的发展,从物理学中不断地分化出诸如粒子物理、原子核物理、原子核物理、原子分子物理、凝聚态物理、激光物理、电子物理、等离子体物理等名目繁多的新分支,以及从物理学和其它学科的杂交中生长出来的。诸如天体物理、地球物理、化学物理、生物物理等众多交叉学科。

屈原:《天问》

遂古之初, 谁传道之? 上下未形,何由考之?... 斡维焉系? 天极何加? ... 九天之际,安放安属? 隅隈多有,谁知其数? 天何所沓?十二焉分? 日月安属?列星安陈?...

我们的"天间"

子會的空间

- ■有限,还是无限?
- 有界, 还是无界?
- 平直, 还是弯曲?
- 静态, 还是动态?

学验的好间

- ■有没有开端? 有没有终结?
- ■时间箭头的产生?

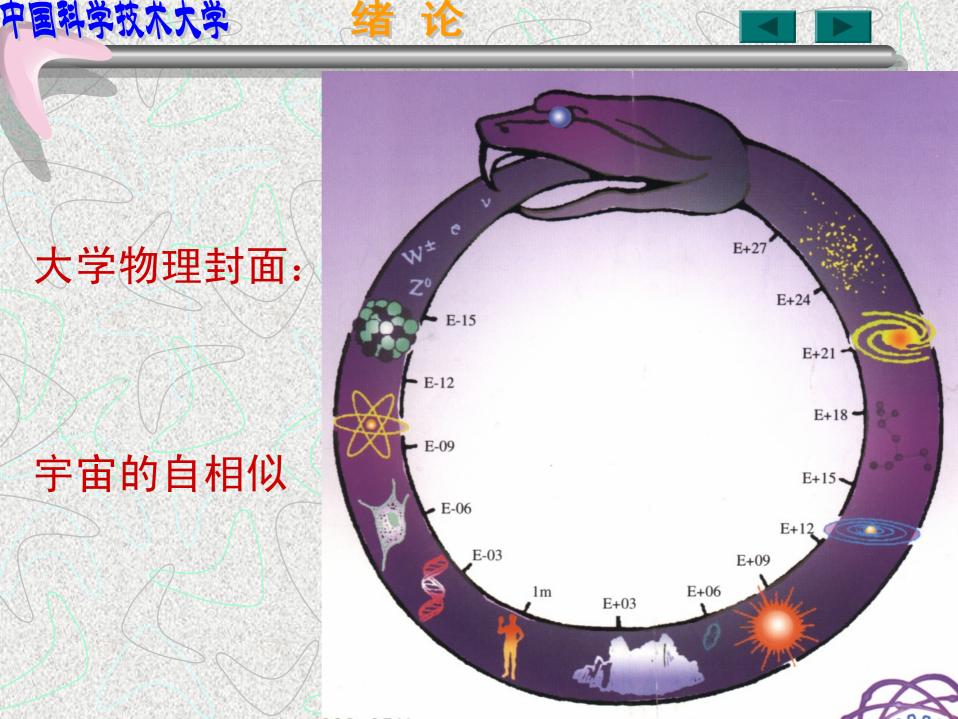
宇宙的成分和演化

- ■宇宙物质的构成?
- ■宇宙结构的形成与演化?

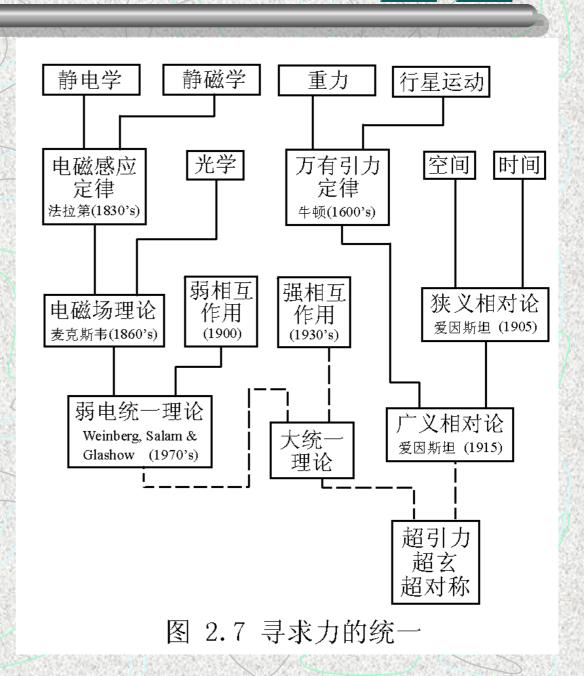
一、什么是物理学(任务和目的)

用一系列尽可能简明的概念和方程(定律),去统一概括物质的结构和运动的基本规律。

物理学依赖于一种基本的信念: 物理世界存在着完整的因果链条。即自然界是统一的, 牛顿力学则是体现这种信念的第一个成功的范例。

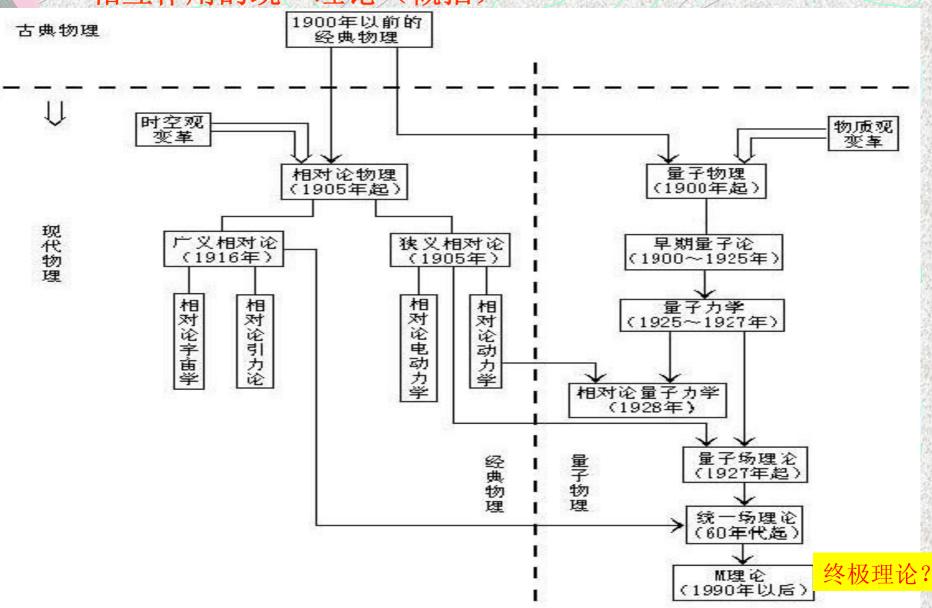

一、什么是物理学(任务和目的)

从整个物理学的发展中, 可以看到一条鲜明的主线, 这就是执着地追求宇宙的统 一,找寻支配宇宙万物的最 基本最统一的规律。


牛顿力学的贡献

- 一时空 描述物质运动的背景框架
- ■动力学方程 物质世界的因果联系
- 一宁恒定律 物理规律的不变性与对称性
- 物理世界的统一 迈出了第一步

相互作用的统一理论


36页

中国科学技术大学

绪 论

相互作用的统一理论(概括)

一、什么是物理学(研究方法)

物理学是一门实验科学,物理学实验是物理学理论正确与否的仲裁者。

物理实验的重要性

物理学实验是物理学理论正确 与否的仲裁者。物理学实验在物理学 的发展中扮演着非常重要的角色。物 理学实验要求具有可重复性。

物理实验的重要性

做实验时,只依靠物理定律,往往是不够的,必须扩充其它假定,如弹簧拉到同样长度产生同样大小的弹力,这与数学不同。

外加的假设,反映了我们对客观世界的看法,或说是客观世界的一种模型。 在什么地方应当补充些什么,或者说用 什么模型去描述客观世界,是物理的难 点。(或称为物理直观)

物理学定律是很多(有限)个实验或现象的总结和 概括,是相对真理,会不断被新的定律修正。

由物理学定律出发,经过合适的逻辑推演而得的结论,我们称之为"定理"。物理学的理论是物理学定律和定理的集合。

自然科学各领域和工程技术都建立在物理学定理的基础上。

物理学的理论与实验

否定一种理论只需一个实验,但实验证据再多也"证明"不了一种理论。这是因为:

无论多少次实验结果都是有限的,不能证明理论对所概括的一切情况正确;

实验总是在某种精度范围内做的;

没有一个理论是独一无二的,例如永动机不可能这条能量守恒定律以前用"人力有限"来解释,大气压强以前用"自然害怕真空"来解释。

物理学的理论与实验

物理学实验是对物理学理论进行"证伪"。

无法证伪的理论, 不是科学的理论。

- 早在(公元前287~212)古希腊阿基米德著的《论比重》 就奠定了静力学基础。
- 意大利的达芬奇(1452~1519)研究滑动摩擦、平衡、力矩。
- 波兰的哥白尼(1473~1543)创立宇宙"日心说"。
- 德国的开普勒(1571~1630)提出行星运动三定律。
- 意大利的伽利略(1564~1642)自由落体规律、惯性 定律及加速度的概念。
- 英国伟大科学家牛顿(1643~1727)在1687年版的《自然哲学的数学原理》一书总其大成,提出动力学的三个基本定律,万有引力定律,天体力学等。是力学奠基人。

二、力学的发展史

理论力学部分:

- ◆瑞士的伯努利(1667~1748)确立了虚位移原理。
- ◆ 瑞士的欧拉(1707~1783)著出《力学》用微分 方程研究。
- ◆ 法国达朗伯(1717~1785)名著《动力学专论》 达朗伯原理。
- ◆ 法国拉格朗日(1736~1813)提出第二类拉格朗日方程。
- ◆ 爱尔兰的哈密顿(1805~1865) 建立哈密顿正则 方程。

三、物理学的学习要求

培养物理直观 了解各种理论的适用范围 做好习题

主要参考书:

- 1、中国科技大学杨维纮编 《力学与理论力学》(上册)
- 2、复旦大学郑永令等编《力学》......

