- 2019 年中科院考研交流 QQ 群 3 群: 702180590
- 购资料可加 VIP 群,学长在线答疑。

中国科学院大学硕士研究生入学考试《生物化学与分子生物学》考试大纲

一、 考试内容

1. 蛋白质化学

考试内容

- 氨基酸的分类,20种常见氨基酸的简写符号
- 氨基酸的酸碱化学性质和氨基酸的化学反应
- 氨基酸混合物的分析分离
- 蛋白质的化学组成和分类
- 肽和肽段的结构及物化性质
- 蛋白质分子的结构(一级、二级、高级结构的概念及形式)
- 蛋白质一级结构的测定
- 蛋白质的理化性质及蛋白质分离纯化
- 蛋白质的含量测定和蛋白质纯度鉴定
- 蛋白质的变性作用
- 蛋白质结构与功能的关系

考试要求

- 了解氨基酸、肽的分类
- 理解氨基酸的通式与结构
- 理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基
- 掌握氨基酸与蛋白质的物理性质和化学性质
- 掌握氨基酸混合物的分离方法
- 掌握蛋白质的变性作用
- 掌握目前蛋白质一级结构的测定方法
- 掌握蛋白质结构与功能的关系
- 掌握蛋白质的分离纯化的原则和方法

2. 核酸化学

考试内容

科大科院考研网,独家提供高参考价值的考研真题、资料、辅导班视频课 直系高分学长学姐一对一辅导,包过线,包录取。请访问 www.kaoyancas.net **带格式的:** 项目符号 + 级别: 1 + 对齐位置: 0 厘米 + 缩进位置: 0.74 厘米

- 核酸的种类和分布及核酸的生物功能
- 核苷酸的结构
- DNA和RNA一级结构的概念和二级结构要特点; DNA的三级结构
- 核酸的主要理化特性
- 核酸的研究方法

考试要求

- 全面了解核酸的组成、结构、结构单位以及
- 全面了解核苷酸组成、结构、结构单位
- 掌握核酸的物化性质
- 掌握核酸的研究方法
- 掌握RNA功能多样性和研究现状
- 掌握microRNA的序列结构特点及其研究现状

3. 糖类结构与功能

考试内容

- 糖的主要分类及其各自的代表
- 糖聚合物及其代表和它们的生物学功能
- 糖链和糖蛋白的生物活性

考试要求

- 理解旋光异构
- 掌握糖的概念及其分类
- 掌握糖类的元素组成、化学本质及生物学功用
- 掌握单糖、二糖、寡糖和多糖的结构和性质
- 掌握糖的鉴定原理

4. 脂质与生物膜

考试内容

- 生物体内脂质的分类,其代表脂及各自特点
- 甘油脂、磷脂以及脂肪酸特性。油脂和甘油磷脂的结构与性质
- 血浆脂蛋白的分类及其结构与功能
- 生物膜的化学组成和结构,"流体镶嵌模型"的要点

考试要求

● 了解脂质的类别、功能

- 熟悉重要脂肪酸、重要磷脂的结构
- 掌握甘油脂、磷脂的通式以及脂肪酸的特性
- 掌握油脂和甘油磷脂的结构与性质
- 掌握血浆脂蛋白的生理功能
- 掌握生物膜结构的主要特征和"流体镶嵌模型"的要点。

5. 酶学

考试内容

- 酶催化作用特点
- 酶的作用机理
- 影响酶促反应的因素(米氏方程的推导)
- 酶的提纯与活力鉴定的基本方法
- 熟悉酶的国际分类和命名
- 抗体酶、核酶和固定化酶的基本概念和应用

考试要求

- 了解酶的概念
- 了解酶的分离提纯基本方法
- 熟悉酶的国际分类(第一、二级分类)
- 了解特殊酶,如溶菌酶、丝氨酸蛋白酶催化反应机制
- 掌握酶活力概念、米氏方程以及酶活力的测定方法
- 掌握核酶和抗体酶的基本概念
- 掌握固定化酶的方法和应用
- 掌握酶活性调节的因素、酶的作用机制(别构酶的结构特点和性质)

6. 维生素和辅酶

考试内容

- 维生素的分类及性质
- 各种维生素的活性形式、生理功能

考试要求

- 了解水溶性维生素的结构特点、生理功能和缺乏病
- 了解脂溶性维生素的结构特点和功能

7. 激素和抗生素

考试内容

- 激素的分类
- 激素的化学本质;激素的合成与分泌
- 常见激素的结构和功能(甲状腺素、肾上腺素、胰岛素、胰高血糖素)
- 激素作用机理
- 抗生素的种类和抗菌作用机制

考试要求

- 了解激素的类型、特点
- 了解常见激素的结构和功能
- 理解激素的化学本质和作用机制
- 理解第二信使学说
- 掌握抗生素作用机制

8. 新陈代谢和生物能学

考试内容

- 新陈代谢的概念、类型及其特点
- ATP与高能磷酸化合物
- ATP的生物学功能
- 电子传递过程与ATP的生成
- 呼吸链的组分、呼吸链中传递体的排列顺序

考试要求

- 了解高能磷酸化合物的概念和种类
- 理解新陈代谢的概念、类型及其特点
- 理解ATP的生物学功能
- 掌握呼吸链的组分、呼吸链中传递体的排列顺序
- 掌握氧化磷酸化偶联机制

9. 糖的分解代谢和合成代谢

考试内容

- 糖的代谢途径,包括物质代谢、能量代谢和有关的酶
- 糖的无氧分解、有氧氧化的概念、部位和过程
- 糖异生作用的概念、场所、原料及主要途径
- 糖原合成作用的概念、反应步骤及限速酶
- 糖酵解、丙酮酸的氧化脱羧和三羧酸循环的反应过程及催化反应的关键

酶

- 光合作用的概况
- 光呼吸和C4途径

考试要求

- 了解糖的各种代谢途径,包括物质代谢、能量代谢和酶的作用
- 了解糖原合成作用的概念、反应步骤及限速酶
- 了解光合作用的总过程
- 了解单糖、蔗糖和淀粉的形成过程
- 理解糖的无氧分解、有氧氧化的概念、部位和过程
- 理解光反应过程和暗反应过程
- 掌握糖酵解、丙酮酸的氧化脱羧和柠檬酸循环(三羧酸循环)的途径及 其限速酶调控位点
- 掌握磷酸戊糖途径、限速酶调控位点及其生理意义

10. 脂类的代谢与合成

考试内容

- 脂肪动员的概念、限速酶; 甘油代谢
- 脂肪酸的β-氧化过程及其能量的计算
- 酮体的生成和利用
- 胆固醇合成的部位、原料及胆固醇的转化及排泄
- 血脂及血浆脂蛋白

考试要求

- 了解甘油代谢:甘油的来源合去路,甘油的激活
- 了解脂类的消化、吸收及血浆脂蛋白
- 了解磷脂和胆固醇的代谢
- 理解脂肪酸的生物合成途径
- 理解脂肪动员的概念、各级脂肪酶的作用、限速酶
- 掌握脂肪酸β-氧化过程及能量生成的计算
- 掌握脂肪的合成代谢

11. 核酸的代谢

考试内容

● 嘌呤、嘧啶核苷酸的分解代谢与合成代谢的途径

- 外源核酸的消化和吸收
- 碱基的分解
- 核苷酸的生物合成
- 常见辅酶核苷酸的结构和作用

考试要求

- 了解外源核酸的消化和吸收
- 了解常见辅酶核苷酸的结构和作用
- 理解碱基的分解代谢
- 理解核苷酸的分解和合成途径
- 掌握核苷酸的从头合成途径

12. 蛋白质的降解和代谢

考试内容

- 蛋白质在细胞内的降解机制及其特点
- 氨基酸分解代谢的过程
- 尿素循环的流程,特点及关键步骤
- 氨基酸代谢异常引起的主要缺陷症

考试要求

- 了解蛋白质降解的过程
- 了解氨基酸代谢缺陷症
- 掌握尿素循环的流程

13. DNA,RNA 和遗传密码

考试内容

- DNA复制的一般规律
- 参与DNA复制的酶类与蛋白质因子的种类和作用(重点是原核生物的DNA 聚合酶)
- DNA复制的基本过程
- 真核生物与原核生物DNA复制的比较
- 转录基本概念;参与转录的酶及有关因子
- 原核生物的转录过程
- RNA转录后加工的意义
- mRNA、tRNA、 rRNA和非编码RNA的后加工

- 逆转录的过程
- 逆转录病毒的生活周期和逆转录病毒载体的应用
- RNA的复制:单链RNA病毒的RNA复制,双链RNA病毒的RNA复制
- RNA传递加工遗传信息
- 染色体与DNA

染色体

染色体概述 真核细胞染色体的组成 原核生物基因组

■ DNA的转座

转座子的分类和结构特征 转座作用的机制 转座作用的遗传学效应 真核生物中的转座子 转座子 Tnl0 的调控机制

考试要求

- 理解DNA的复制和DNA损伤的修复基本过程
- 全面了解RNA转录与复制的机制
- 理解RNA的复制
- 理解原核生物的转录过程
- 掌握参与DNA复制的酶与蛋白质因子的性质和种类
- 掌握DNA复制的特点
- 掌握真核生物与原核生物DNA复制的异同点
- 掌握DNA的损伤与修复的机理
- 掌握转录的一般规律
- 掌握RNA聚合酶的作用机理
- 掌握启动子的作用机理
- 掌握真核生物的转录过程、转录后加工过程及其意义
- 掌握逆转录的过程及生物学意义
- 掌握逆转录病毒载体的应用(iPS细胞和疾病治疗)
- 掌握RNA传递加工遗传信息

14. 蛋白质的合成和转运

考试内容

- mRNA在蛋白质生物合成中的作用、原理和密码子的概念、特点
- tRNA、核糖体在蛋白质生物合成中的作用和原理
- 参与蛋白质生物合成的主要分子的种类和功能
- 蛋白质生物合成的过程
- 翻译后的加工过程
- 真核生物与原核生物蛋白质合成的区别
- 蛋白质合成的抑制剂

考试要求

- 全面了解蛋白质生物合成的分子基础
- 理解蛋白质合成抑制因子的作用机理
- 掌握翻译的步骤
- 掌握翻译后加工过程
- 掌握真核生物与原核生物蛋白质合成的区别

15. 细胞代谢和基因表达调控

考试内容

- 细胞代谢的调节网络
- 酶活性的调节
- 细胞信号传递系统
- 原核生物和真核生物基因表达调控的区别
- 真核生物基因转录前水平的调节
- 真核生物基因转录活性的调节和转录因子的功能
- 操纵子学说(原核生物基因转录起始的调节)
- 翻译水平上的基因表达调控
- 原核基因表达调控

原核基因调控总论

转录调节的类型

启动子与转录起始(要求熟练掌握,灵活运用)

RNA 聚合酶与启动子的相互作用

环腺苷酸受体蛋白对转录的调控

乳糖操纵子

酶的诱导——lac 体系受调控的证据

操纵子模型 (要求熟练掌握,灵活运用)

lac 操纵子 DNA 的调控区域

lac 操纵子中的其他问题

色氨酸操纵子

trp 操纵子的阻遏系统

弱化子与前导肽

trp 操纵子弱化机制的实验依据

阻遏作用与弱化作用的协调

其他操纵子

半乳糖操纵子

阿拉伯糖操纵子

组氨酸操纵子

recA 操纵子

多启动子调控的操纵子

入噬菌体基因表达调控

入噬菌体

入噬菌体基因组

溶原化循环和溶菌途径的建立

OΙ

入噬菌体的调控区及入阻遏物的发现

CI蛋白和 Cro 蛋白

转录后调控

稀有密码子对翻译的影响

重叠基因对翻译的影响

Poly(A)对翻译的影响

翻译的阻遏

RNA 的高级结构对翻译的影响

RNA—RNA 相互作用对翻译的影响

魔斑核苷酸水平对翻译的影响

考试要求

- 理解代谢途径的交叉形成网络和代谢的基本要略
- 理解酶促反应的前馈和反馈、酶活性的特异激活剂和抑制剂
- 了解细胞信号传递和细胞增殖调节机理
- 掌握细胞膜结构对代谢的调节和控制作用
- 掌握操纵子学说的核心
- 掌握原核和真核生物基因表达的调节

16. 基因工程和蛋白质工程

考试内容

● 基因工程的简介

- DNA克隆的基本原理
- 基因的分离、合成和测序
- 克隆基因的表达
- 基因来源、人类基因组计划及核酸顺序分析
- 基因的功能研究(针对基因功能的相关研究技术如基因敲除和RNA干扰是 近年来的研究热点,是基础研究与技术结合的典范)
- RNA和DNA的测序方法及其过程
- 蛋白质工程

考试要求

- 了解人类基因组计划及核酸顺序分析
- 了解蛋白质工程的进展
- 掌握基因工程操作的一般步骤,
- 掌握各种水平上的基因表达调控
- 掌握研究基因功能的一些方法和原理
- 掌握RNA和DNA的测序方法原理及其过程
- 掌握研究蛋白质相互作用的方法

17. 真核生物基因调控原理

考试内容

● 真核细胞的基因结构

基因家族(gene family)

真核基因的断裂结构

真核生物 DNA 水平的调控(要求熟练掌握,灵活运用)

● 顺式作用元件与基因调控(要求熟练掌握,灵活运用)

Britten-Davidson 模型

染色质结构对转录的影响

启动子及其对转录的影响

增强子及其对转录的影响

● 反式作用因子对转录的调控(要求熟练掌握,灵活运用)

CAAT 区结合蛋白 CTF / NFI

TATA 和 GC 区结合蛋白

RNA 聚合酶III及其下游启动区结合蛋

其他转录因子及分子机制

转录因子介导的基因表达的级联调控(发育生物学的核心问题就是同样的基因

组是如何实现时空特异表达的,转录因子在这其中起到了重要的作用,这是细胞 信号转导和细胞分化的研究热点之一)

● 激素及其影响

固醇类激素的作用机理 多肽激素的作用机理 激素的受体

● 其他水平上的基因调控

RNA 的加工成熟 翻译水平的调控 蛋白质的加工成熟

考试要求

- 掌握真核生物基因表达多级调控系统的调节
- 掌握真核生物基因结构和调控的基本概念

18. 高等动物的基因表达

考试内容

- 表观遗传学的概念和研究范畴
- 基因表达与DNA甲基化(要求熟练掌握,灵活运用)
 - DNA 的甲基化
 - DNA 甲基化对基因转录的抑制机理
 - DNA 甲基化与 X 染色体失活
 - DNA 甲基化与转座及细胞癌变的关系
- 基因表达与组蛋白修饰(组蛋白修饰的种类和对基因表达的影响)
- 蛋白质磷酸化与信号传导(要求熟练掌握,灵活运用)
- 免疫球蛋白的分子结构
- 分子伴侣的功能
- 原癌基因及其调控
- 癌基因和生长因子的关系

考试要求

- 熟练掌握基因表达与DNA甲基化和组蛋白修饰
- 熟练掌握蛋白质磷酸化与信号传导
- 掌握原癌基因定义、特点、激活机制和原癌基因产物及其功能
- 掌握表观遗传学概念、表观遗传学种类和研究方法

19. 病毒的分子生物学(一般了解)

考试内容

- 人免疫缺损病毒——HIV HIV 病毒粒子的形态结构和传染
- 乙型肝炎病毒——HBV 肝炎病毒的分类地位及病毒粒子结构
- SV40病毒

SV40 基因的转录调控

考试要求

- 掌握SV40基因的转录调控
- 20. 植物基因工程(一般了解)

考试内容

- 工程的基本原理(农杆菌Ti质粒法、直接转化法)
- 植物抗逆和抗生物胁迫的分子生物学
- 21. 基因工程产业化的现状与展望 (一般了解)

考试内容

● 基因治疗和精准医疗

二、 考试方法和考试时间

硕士研究生入学生物化学与分子生物学考试为笔试,考试时间为3小时。试 卷务必书写清楚、符号和西文字母运用得当。不得在试题上答卷。

三、 主要参考教材(参考书目)

《生物化学》(2002年第三版),上、下册 王镜岩、朱圣庚、徐长法编著,高 等教育出版社

《基因X》(中文版), Benjamin Lewin, 科学出版社

编制单位:中国科学院大学 编制日期:2018年6月7日

- 2019 年中科院考研交流 QQ 群 3 群: 702180590
- 购资料可加 VIP 群,学长在线答疑。

带格式的: 项目符号 + 级别: 1 + 对齐位置: 0 厘米 + 缩进位置: 0.74 厘米